Proximal Algorithms
1. Introduction
Much like Newton's method is a standard tool for solving unconstrained smooth minimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed version of these problems. They are very generally applicable, but they turn out to be especially well-suited to problems of recent and widespread interest involving large or high-dimensional datasets.
Proximal methods sit at a higher level of abstraction than classical optimization algorithms like Newton’s method. In the latter, the base operations are low-level, consisting of linear algebra operations and the computation of gradients and Hessians. In proximal algorithms, the base operation is evaluating the proximal operator of a function, which involves solving a small convex optimization problem. These subproblems can be solved with standard methods, but they often admit closedform solutions or can be solved very quickly with simple specialized methods. We will also see that proximal operators and proximal algorithms have a number of interesting interpretations and are connected to many different topics in optimization and applied mathematics.
2. Algorithms
For following convex optimization problem
$$\min_{x}f(x)+g(x)$$
where $f$ is smooth, $g:R^n\rightarrow R\cup \{+\infty\}$ is closed proper convex.
Generally, there are several proximal methods to solve this problem.
- Proximal Gradient Method
$$x^{k+1}:=prox_{\lambda^kg}(x^k-\lambda^k \nabla f(x^k)$$
which converges with rate $O(1/k)$ when $\nabla f$ is Lipschitz continuous with constant L and step sizes are $ \lambda^k=\lambda\in(0,1/L]$. If $L$ is not known, we can use the following line search:
Typical value of $\beta$ is 1/2, and
$$\hat{f}_{\lambda}(x,y)=f(y)+\nabla f(y)^T(x-y)+(1/2\lambda)||x-y||_{2}^2$$
- Accelerated Proximal Gradient Method
$$y^{k+1}=x^k+\omega (x^k-x^{k-1})$$
$$x^{k+1}:=prox_{\lambda^kg}(y^{k+1}-\lambda^k \nabla f(y^{k+1}))$$
works for $\omega^k=k/(k+3)$ and similar line search as before.
This method has faster $O(1/k^2)$ convergence rate, originated with Nesterov (1983)
- ADMM
$$x^{k+1}:=prox_{\lambda f}(z^k-u^k)$$
$$z^{k+1}:=prox_{\lambda g}(x^{k+1}+u^k)$$
$$u^{k+1}:=u^k+x^{k+1}-z^{k+1}$$
basiclly, always works and has $O(1/k)$ rate in general. If $f$ and $g$ are both indicators, get a variation on alternating projections.
This method originates from Gabay, Mercier, Glowinski, Marrocco in 1970s.
3. Example
You are required to solve the following optimization problem
$$\min_{x}\frac{1}{2}x^TAx+b^Tx+c+\gamma||x||_{1}$$
where
$$A=\begin{pmatrix} 2 & 0.25 \\ 0.25 & 0.2 \end{pmatrix},\;b=\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix},\; c=-1.5, \; \lambda=0.2$$
As for this problem, if $f(x)=\frac{1}{2}x^TAx+b^Tx+c$ and $g(x)=\gamma||x||_{1}$ then
$$\nabla f(x)=Ax+b$$
If $g=||\cdot||_{1}$, then
$$prox_{\lambda f}(v)=(v-\lambda)_{+}-(-v-\lambda)_{+}$$
So the update step is
$$x^{k+1}:=prox_{\lambda^k \gamma||\cdot||_{1}}(x^k-\lambda^k \nabla f(x^k))$$
Finally, the 2D coutour plot of objective function and the trajectory of the value update are showed in following figure.
Additionally, when we use proximal gradient method based on exact line search to optimize the objective function, the result is:
We can find that proximal algorithm can solve this nonsmooth sonvex optimization problem successfully. And method based on exact line search can obtain faster convergence rate than one based on backtracking line search.
If you want to learn proximal algorithms further, you can read the book "Proximal Algorithms" by N. Parikh and S. Boyd, and corresponding website: http://web.stanford.edu/~boyd/papers/prox_algs.html
References
Parikh, Neal, and Stephen P. Boyd. "Proximal Algorithms." Foundations and Trends in optimization 1.3 (2014): 127-239.
Proximal Algorithms的更多相关文章
- Proximal Algorithms 6 Evaluating Proximal Operators
目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...
- Proximal Algorithms 5 Parallel and Distributed Algorithms
目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...
- Proximal Algorithms 4 Algorithms
目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...
- Proximal Algorithms 3 Interpretation
目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...
- Proximal Algorithms 1 介绍
目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...
- Proximal Algorithms 7 Examples and Applications
目录 LASSO proximal gradient method ADMM 矩阵分解 ADMM算法 多时期股票交易 随机最优 Robust and risk-averse optimization ...
- Proximal Algorithms 2 Properties
目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...
- Proximal Gradient Descent for L1 Regularization
[本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题: ...
- Matrix Factorization, Algorithms, Applications, and Avaliable packages
矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...
随机推荐
- rsyslog编译依赖问题解决
bit-32-centos6.4测试loganalyzer+mysql+rsyslog web界面中央日志分析系统.1,报json-c错误wget http://cloud.github.com/ ...
- Activity服务类-5 IdentityService服务类
一.内置用户组(角色)设计表概念 用户和组(或者叫做角色),多对多关联,通过关联表实现 act_id_user 用户表: act_id_group 用户组表: act_id_membership 用户 ...
- ubuntu编译安装php7, 安装openssl
sudo apt-get install openssl sudo apt-get install libssl-dev
- Java 跨域 CrossOrigin注解 Filter拦截 Nginx配置
说明 资源请求的发起方与请求的资源不在同一个域中的: 一般的,只要网站的[协议名protocol].[主机host].[端口号port]这三个中的任意一个不同,网站间的数据请求与传输便构成了跨域调用: ...
- How to Pronounce T and D between Consonants
How to Pronounce T and D between Consonants Share Tweet Share Tagged With: Dropped T What happens to ...
- 2017.1.9版给信息源新增:max_len、max_db字段
2017.1.8a版程序给信息源增加max_len.max_db字段,分别用于控制:获取条数.数据库保留条数. max_len的说明见此图: max_db的说明见此图: 当max_len和max_db ...
- scala spark 调用hivecontext
import org.apache.spark.rdd.RDD def save(data: RDD[ModelReplay], modelKey: String, dt: String): Unit ...
- input:file属性
1.accept 只能选择png和gif图片 <input id="fileId1" type="file" accept="image/png ...
- 精确除法:from __future__ import division
在python中做除法运算,使用1/2运行结果为0,为取结果的整数部分 如果用1.0/2或1/2.0运行结果为0.5,按照浮点数的位数取结果 但是实际应用中我们需要取除法的精确结果,我们就可以在运行前 ...
- java &&与||短路的详解
短路运算符就是我们常用的“&&”.“||”,一般称为“条件操作”. class Logic{ public ststic void main(String[] args){ ...