1. Introduction


Much like Newton's method is a standard tool for solving unconstrained smooth minimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed version of these problems. They are very generally applicable, but they turn out to be especially well-suited to problems of recent and widespread interest involving large or high-dimensional datasets.

Proximal methods sit at a higher level of abstraction than classical optimization algorithms like Newton’s method. In the latter, the base operations are low-level, consisting of linear algebra operations and the computation of gradients and Hessians. In proximal algorithms, the base operation is evaluating the proximal operator of a function, which involves solving a small convex optimization problem. These subproblems can be solved with standard methods, but they often admit closedform solutions or can be solved very quickly with simple specialized methods. We will also see that proximal operators and proximal algorithms have a number of interesting interpretations and are connected to many different topics in optimization and applied mathematics.

2. Algorithms


For following convex optimization problem

$$\min_{x}f(x)+g(x)$$

where $f$ is smooth, $g:R^n\rightarrow R\cup \{+\infty\}$ is closed proper convex.

Generally, there are several proximal methods to solve this problem.

  • Proximal Gradient Method

$$x^{k+1}:=prox_{\lambda^kg}(x^k-\lambda^k \nabla f(x^k)$$

which converges with rate $O(1/k)$ when $\nabla f$ is Lipschitz continuous with constant L and step sizes are $ \lambda^k=\lambda\in(0,1/L]$. If $L$ is not known, we can use the following line search:

Typical value of $\beta$ is 1/2, and

$$\hat{f}_{\lambda}(x,y)=f(y)+\nabla f(y)^T(x-y)+(1/2\lambda)||x-y||_{2}^2$$

  • Accelerated Proximal Gradient Method

$$y^{k+1}=x^k+\omega (x^k-x^{k-1})$$

$$x^{k+1}:=prox_{\lambda^kg}(y^{k+1}-\lambda^k \nabla f(y^{k+1}))$$

works for $\omega^k=k/(k+3)$ and similar line search as before.

This method has faster $O(1/k^2)$ convergence rate, originated with Nesterov (1983)

  • ADMM

$$x^{k+1}:=prox_{\lambda f}(z^k-u^k)$$

$$z^{k+1}:=prox_{\lambda g}(x^{k+1}+u^k)$$

$$u^{k+1}:=u^k+x^{k+1}-z^{k+1}$$

basiclly, always works and has $O(1/k)$ rate in general. If $f$ and $g$ are both indicators, get a variation on alternating projections.

This method originates from Gabay, Mercier, Glowinski, Marrocco in 1970s.

3. Example


You are required to solve the following optimization problem

$$\min_{x}\frac{1}{2}x^TAx+b^Tx+c+\gamma||x||_{1}$$

where

$$A=\begin{pmatrix} 2 & 0.25 \\ 0.25 & 0.2 \end{pmatrix},\;b=\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix},\; c=-1.5, \; \lambda=0.2$$

As for this problem, if $f(x)=\frac{1}{2}x^TAx+b^Tx+c$ and $g(x)=\gamma||x||_{1}$ then

$$\nabla f(x)=Ax+b$$

If $g=||\cdot||_{1}$, then

$$prox_{\lambda f}(v)=(v-\lambda)_{+}-(-v-\lambda)_{+}$$

So the update step is

$$x^{k+1}:=prox_{\lambda^k \gamma||\cdot||_{1}}(x^k-\lambda^k \nabla f(x^k))$$

Finally, the 2D coutour plot of objective function and the trajectory of the value update are showed in following figure.

Additionally, when we use proximal gradient method based on exact line search to optimize the objective function, the result is:

We can find that proximal algorithm can solve this nonsmooth sonvex optimization problem successfully. And method based on exact line search can obtain faster convergence rate than one based on backtracking line search.

If you want to learn proximal algorithms further, you can read the book "Proximal Algorithms" by N. Parikh and S. Boyd, and corresponding website: http://web.stanford.edu/~boyd/papers/prox_algs.html

References


Parikh, Neal, and Stephen P. Boyd. "Proximal Algorithms." Foundations and Trends in optimization 1.3 (2014): 127-239.


 




 

Proximal Algorithms的更多相关文章

  1. Proximal Algorithms 6 Evaluating Proximal Operators

    目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...

  2. Proximal Algorithms 5 Parallel and Distributed Algorithms

    目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...

  3. Proximal Algorithms 4 Algorithms

    目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...

  4. Proximal Algorithms 3 Interpretation

    目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...

  5. Proximal Algorithms 1 介绍

    目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...

  6. Proximal Algorithms 7 Examples and Applications

    目录 LASSO proximal gradient method ADMM 矩阵分解 ADMM算法 多时期股票交易 随机最优 Robust and risk-averse optimization ...

  7. Proximal Algorithms 2 Properties

    目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...

  8. Proximal Gradient Descent for L1 Regularization

    [本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                     ...

  9. Matrix Factorization, Algorithms, Applications, and Avaliable packages

    矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...

随机推荐

  1. HTML5 学习之地理定位

    html5 获取坐标: <!DOCTYPE HTML> <html> <head> <title>test1.html</title> &l ...

  2. 解决maven工程 子工程中的一些配置读取进来的问题

    方案:在父工程中手动配置一些节点 <build> <!-- 插件 --> <plugins> <plugin> <groupId>org.a ...

  3. java中正则表达式,编译报错:Invalid escape sequence (valid ones are \b \t \n \f \r \" \' \\ )

    转自:https://www.cnblogs.com/EasonJim/p/6561666.html 若出现:Invalid escape sequence (valid ones are  \b   ...

  4. datasnap 如何监控客户端的连接情况

    如果客户端是TCP/IP是短连接的情况就没有必要了. type pClientConns = ^TClientConns; // 客户连接 TClientConns = record clientid ...

  5. ESCP打印机数据解密

    通过串口调试工具 抓取到的16进制文本; 如下 然后打开我们的文档,查看命令数据内容. 详情请密我QQ:1161588342  说明加好友原因

  6. java自定义线程池

    如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间.那么有没有一种办法使得线程可以复用,就是执行完一个任 ...

  7. python中 cmp

    python3.*版本中取消了数值之间的比较:cmp(x, y).取而代之的是 (x > y) - (x < y) 因为python中 false 为 0, true 为 1.

  8. python中range()、list()函数的用法

      Python  range() 函数返回的是一个可迭代对象(类型是对象),而不是列表类型, 所以打印的时候不会打印列表. 函数语法: range(stop) range(start, stop , ...

  9. ABAP-动态ALV

    1.参数定义 "ALV type-pools:slis,rsds,vrm. data:gt_fieldcat type lvc_t_fcat with header line, gt_eve ...

  10. AMD 与CMD

    AMD AMD是"Asynchronous Module Definition"的缩写,意思就是"异步模块定义".它采用异步方式加载模块,模块的加载不影响它后面 ...