深度学习数据集Deep Learning Datasets
Datasets
Symbolic Music Datasets
- Piano-midi.de: classical piano pieces (http://www.piano-midi.de/)
- Nottingham : over 1000 folk tunes (http://abc.sourceforge.net/NMD/)
- MuseData: electronic library of classical music scores (http://musedata.stanford.edu/)
- JSB Chorales: set of four-part harmonized chorales (http://www.jsbchorales.net/index.shtml)
Natural Images
- MNIST: handwritten digits (http://yann.lecun.com/exdb/mnist/)
- NIST: similar to MNIST, but larger
- Perturbed NIST: a dataset developed in Yoshua’s class (NIST with tons of deformations)
- CIFAR10 / CIFAR100: 32×32 natural image dataset with 10/100 categories (http://www.cs.utoronto.ca/~kriz/cifar.html)
- Caltech 101: pictures of objects belonging to 101 categories (http://www.vision.caltech.edu/Image_Datasets/Caltech101/)
- Caltech 256: pictures of objects belonging to 256 categories (http://www.vision.caltech.edu/Image_Datasets/Caltech256/)
- Caltech Silhouettes: 28×28 binary images contains silhouettes of the Caltech 101 dataset
- STL-10 dataset is an image recognition dataset for developing unsupervised feature learning, deep learning, self-taught learning algorithms. It is inspired by the CIFAR-10 datasetbut with some modifications.http://www.stanford.edu/~acoates//stl10/
- The Street View House Numbers (SVHN) Dataset - http://ufldl.stanford.edu/housenumbers/
- NORB: binocular images of toy figurines under various illumination and pose (http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/)
- Imagenet: image database organized according to the WordNethierarchy (http://www.image-net.org/)
- Pascal VOC: various object recognition challenges (http://pascallin.ecs.soton.ac.uk/challenges/VOC/)
- Labelme: A large dataset of annotated images, http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
- COIL 20: different objects imaged at every angle in a 360 rotation(http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php)
- COIL100: different objects imaged at every angle in a 360 rotation (http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php)
- Arcade Universe- An artificial dataset generator with images containing arcade games sprites such as tetris pentomino/tetromino objects. This generator is based on the O. Breleux’s bugland dataset generator.
- A collection of datasets inspired by the ideas from BabyAISchool:
- BabyAIShapesDatasets : distinguishing between 3 simple shapes
- BabyAIImageAndQuestionDatasets : a question-image-answer dataset
- Datasets generated for the purpose of an empirical evaluation of deep architectures (DeepVsShallowComparisonICML2007):
- MnistVariations : introducing controlled variations in MNIST
- RectanglesData : discriminating between wide and tall rectangles
- ConvexNonConvex : discriminating between convex and nonconvex shapes
- BackgroundCorrelation : controlling the degree of correlation in noisy MNIST backgrounds
Faces
- Labelled Faces in the Wild: 13,000 images of faces collected from the web, labelled with the name of the person pictured (http://vis-www.cs.umass.edu/lfw/)
- Toronto Face Dataset
- Olivetti: a few images of several different people (http://www.cs.nyu.edu/~roweis/data.html)
- Multi-Pie: The CMU Multi-PIE Face Database (http://www.multipie.org/)
- Face-in-Action (http://www.flintbox.com/public/project/5486/)
- JACFEE: Japanese and Caucasian Facial Expressions of Emotion (http://www.humintell.com/jacfee/)
- FERET: The Facial Recognition Technology Database (http://www.itl.nist.gov/iad/humanid/feret/feret_master.html)
- mmifacedb: MMI Facial Expression Database (http://www.mmifacedb.com/)
- IndianFaceDatabase: http://vis-www.cs.umass.edu/~vidit/IndianFaceDatabase/)
- (e.g. The Yale Face Database (http://vision.ucsd.edu/content/yale-face-database) and The Yale Face Database B (http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html)).
Text
- 20 newsgroups: classification task, mapping word occurences to newsgroup ID (http://qwone.com/~jason/20Newsgroups/)
- Reuters (RCV*) Corpuses: text/topic prediction (http://about.reuters.com/researchandstandards/corpus/)
- Penn Treebank : used for next word prediction or next character prediction (http://www.cis.upenn.edu/~treebank/)
- Broadcast News: large text dataset, classically used for next word prediction (http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC97S44)
- Wikipedia Dataset
- Multidomain sentiment analysis dataset: http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
Speech
- TIMIT Speech Corpus: phoneme classification (http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1)
- Aurora : Timit with noise and additional information
- MovieLens: Two datasets available from http://www.grouplens.org.
The first dataset has 100,000 ratings for 1682 movies by 943 users,
subdivided into five disjoint subsets. The second dataset has about 1
million ratings for 3900 movies by 6040 users. - Jester: This dataset contains 4.1 million continuous ratings (-10.00 to +10.00) of 100 jokes from 73,421 users.
- Netflix Prize: Netflix released an anonymised version of their movie rating dataset; it consists of 100 million ratings, done by 480,000 users who have rated between 1 and all of the 17,770 movies.
- Book-Crossing dataset: This dataset is from the Book-Crossing community, and contains 278,858 users providing 1,149,780 ratings about 271,379 books.
Misc
- “Musk” dataset
- CMU Motion Capture Database: (http://mocap.cs.cmu.edu/)
- Brodatz dataset: texture modeling (http://www.ux.uis.no/~tranden/brodatz.html)
- Million Song dataset: http://labrosa.ee.columbia.edu/millionsong/
- Merck Molecular Activity Challenge - http://www.kaggle.com/c/MerckActivity/data
from: http://deeplearning.net/datasets/
深度学习数据集Deep Learning Datasets的更多相关文章
- 深度学习(Deep Learning)资料大全(不断更新)
Deep Learning(深度学习)学习笔记(不断更新): Deep Learning(深度学习)学习笔记之系列(一) 深度学习(Deep Learning)资料(不断更新):新增数据集,微信公众号 ...
- 学习笔记之深度学习(Deep Learning)
深度学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 深度学习(deep lea ...
- 读李宏毅《一天看懂深度学习》——Deep Learning Tutorial
大牛推荐的入门用深度学习导论,刚拿到有点懵,第一次接触PPT类型的学习资料,但是耐心看下来收获还是很大的,适合我这种小白入门哈哈. 原PPT链接:http://www.slideshare.net/t ...
- 深度学习(deep learning)
最近deep learning大火,不仅仅受到学术界的关注,更在工业界受到大家的追捧.在很多重要的评测中,DL都取得了state of the art的效果.尤其是在语音识别方面,DL使得错误率下降了 ...
- 如何正确理解深度学习(Deep Learning)的概念
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有 ...
- 深度学习教程Deep Learning Tutorials
Deep Learning Tutorials Deep Learning is a new area of Machine Learning research, which has been int ...
- Caffe——清晰高效的深度学习(Deep Learning)框架
Caffe(http://caffe.berkeleyvision.org/)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清(http://daggerfs.com/ ...
- 深度学习研究组Deep Learning Research Groups
Deep Learning Research Groups Some labs and research groups that are actively working on deep learni ...
- 深度学习(deep learning)优化调参细节(trick)
https://blog.csdn.net/h4565445654/article/details/70477979
随机推荐
- s12-day01-work02 python多级菜单展示
README # README.md # day001-work-2 @南非波波 功能实现:多级菜单展示 流程图:  程序实现: ...
- LoadRunner参数化取值与连接数据库
LoadRunner参数化取值与连接数据库 LoadRunner在使用参数化的时候,通常都是需要准备大数据量的,也因此LoadRunner提供两种参数化取值方式,一种是手动编辑,另一种就是通过连接 ...
- hadoop出现error包问题记录
前段时间,我公司发现大部分hadoop服务器有重传数据包和error包现象,且重传率经常超过1%.zabbix告警hadoop主机有error包出现.收到大量类似如下告警信息: Trigger: et ...
- 6-14 Inspector s Dilemma uva12118(欧拉道路)
题意:给出一个国家城市个数n 所需走过道路个数e 每条道路长t 该国家任意两个城市之间都存在唯一道路长t 要求 :找一条最短的路遍历所有所需走过的路 一开始以为是图的匹配 但是好 ...
- linux下更换pip源
pip不更换源的话,速度可能非常慢.这里将pip源更换为阿里云源. 1.修改文件~/.pip/pip.conf(没有该文件则创建一个) $ sudo vim ~/.pip/pip.conf 2.写入以 ...
- Alter GDG limit
//JOBCARD... //*-------------------------------------------------------------------* //* Alter GDG l ...
- 机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q( ...
- JSTL介绍
JSTL介绍 一.介绍 JSP标准标签库(JSTL)是一个JSP标签集合,它封装了JSP应用的通用核心功能. JSTL支持通用的.结构化的任务,比如迭代,条件判断,XML文档操作,国际化标签,SQL标 ...
- CodeForces600E Lomsat gelral 线段树合并
从树上启发式合并搜出来的题 然而看着好像线段树合并就能解决??? 那么就用线段树合并解决吧 维护\(max, sum\)表示值域区间中的一个数出现次数的最大值以及所有众数的和即可 复杂度\(O(n \ ...
- Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树
https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...