当前很多的特征学习(feature learning)算法需要很多的超参数(hyper-parameter)调节, Sparse Filtering则只需要一个超参数--需要学习的特征的个数, 所以非常易于进行参数调节.

1.特征分布及其特性

基本上所有的参数学习算法都是要生成特定的特征分布, 比如sparse coding是要学得一种稀疏的特征, 亦即学到的特征中只有较少的非零项. 基本上所有的特征学习算法都是为了优化特征分布的某些特性的.Sparse Filtering也是这样的一种特征学习方法, 其目的是为了学到拥有一下特定特性的特征, 为了简洁, 首先定义一下符号表示, 令M为特征分布矩阵,每一列列代表一个样本, 每一行代表一个特征(该特征是学到的, 而不是初始的特征), \( f_j^{(i)}\)代表矩阵中的第(j,i)项, 亦即第i个样本的第j个特征的激活值 .

1. 每个样本的特征都比较稀疏(Population Sparsity)

每个样本的特征向量中, 只有很少的项是非零的, 亦即M中的每一列都是稀疏的.

2. 每种特征在所有的样本上比较稀疏(Lifetime Sparsity)

每个特征在所有的训练样本上比较稀疏, 亦即M中的每一行都是稀疏的.

3. 特征的分布比较均匀(High Dispersal)

每个特征的统计分布应该是比较接近的, 没有那个特征(亦即M中某行)比其他的特征要稠密的很多. Sparse Filtering使用平均激活平方(mean square activations)来表示特征的分布, 对于特征j, 平均激活平方为\(\sum_{i}(f_j^{(i)})^{2}\). Sparse Filtering希望所有的特征的平均激活平方比较接近, 也就意味着所有的特征有着相似的贡献. High Dispersal特性避免了某些特征一直处于激活状态的情况.

特征分布的特性已经在神经科学领域有了一些探索, 并且发现Population Sparsity和Lifetime Sparsity并不一定是相关的. 另外, 除了Sparse Filtering, 许多其他的特征学习方法也会规定这种特征分布的特性. 对于Lifetime Sparsity, Sparse RBM要求特征的平均激活值要接近一个给定的值, ICA和Sparse autoencoder也会规定Lifetime Sparsity. KMeans使用类簇的中心作为特征, 每个样本都只会属于一个类簇, 所以其特征向量中只会有一个非零值, 相当于是Population Sparsity, Sparse Coding也是一种Pupulation Sparsity.

Sparse Filtering直接从特征分布出发, 在满足High Dispersal的条件下优化Population Sparsity, 满足这两个条件的特征也会满足Lifetime Sparsity.

2. Sparse Filtering

令\(f_{j}^{(i)}=\boldsymbol{w}_{\boldsymbol{j}}^{T}\boldsymbol{x}^{(i)}\). Sparse Filtering首先对特征分布矩阵M中的每一行进行正则化Z(正则化每一个样本), 然后对每一列进行正则化(正则化每一种特征), 最后优化特征分布矩阵中所有项的绝对值加和. 亦即我们首先正则化特征分布矩阵的每一行:\(\tilde{\boldsymbol{f}_{\boldsymbol{j}}}=\boldsymbol{f}_{\boldsymbol{j}}/\|\boldsymbol{f}_{\boldsymbol{j}}\|_2\), 然后正则化特征分布矩阵的每一列:\(\hat{\boldsymbol{f}}^{(\boldsymbol{i})}={\tilde{\boldsymbol{f}}}^{(\boldsymbol{i})}/\|{\tilde{\boldsymbol{f}}}^{(\boldsymbol{i})}\|_2\), 然后优化特征分布矩阵的项的绝对值加权和(假定有n个样本):$$minimize \sum_{i=1}^{n} {\|{\hat{\boldsymbol{f}}}^{(\boldsymbol{i})}\|}_1 = \sum_{i=1}^{n} {\left|\left| \frac{{\tilde{\boldsymbol{f}}}^{(\boldsymbol{i})}}{{\|\tilde{\boldsymbol{f}}}^{(\boldsymbol{i})}\|_2}\right|\right|}_1$$.

以上算法步骤对于Population Sparsity, Lifetime Sparsity, High Dispersal三种特征特性的优化细节如下:

2.1 对于Population Sparsity的优化:

\({\|{\hat{\boldsymbol{f}}}^{(\boldsymbol{i})}\|}_1 = {\left|\left| \frac{{\tilde{\boldsymbol{f}}}^{(\boldsymbol{i})}}{{\|\tilde{\boldsymbol{f}}}^{(\boldsymbol{i})}\|_2}\right|\right|}_1\)衡量了第i个样本的Population Sparsity, 因为正则化后的特征\(\hat{\boldsymbol{f}}^{(\boldsymbol{i})}\)被限制在一个单位半径的\(\ell_2\)球上, 最小化\({\|{\hat{\boldsymbol{f}}}^{(\boldsymbol{i})}\|}_1\)相当于要求样本的特征很稀疏. 如下图所示:

左图中, 假设只有两维特征, 并设定X,Y轴为这两维特征. 有绿色和红色两个样本, 三角代表俩样本正则化之前的坐标, 圆圈代表正则化之后的坐标. 正则化之后的样本的坐标都会落在虚线的圆上, 但是我们发现, 在这个圆上, 越接近坐标轴的点, 其\(ell_1|)越小, 亦即如果我们以\(ell_1\)为优化目标, 则样本的坐标会倾向于接近坐标轴, 亦即使得大部分特征值为0, 使得特征向量很稀疏. 右图说明了正则化会引入特征之间的竞争,亦即如果某一维特征的值(\(\tilde{\boldsymbol{f}_1}\))增加了, 则正则化后其他的特征值会降低(\(\tilde{\boldsymbol{f}_2}\)).

2.2 对High Dispersal进行优化

在上述步骤中我们已经对每一个特征进行了正则化(第二步): \(\hat{\boldsymbol{f}}^{(\boldsymbol{i})}={\tilde{\boldsymbol{f}}}^{(\boldsymbol{i})}/\|{\tilde{\boldsymbol{f}}}^{(\boldsymbol{i})}\|_2\), 亦即所有特征的期望激活平方为1,

2.3 对Lifetime Sparsity进行优化

如果我们已经限制了特征分布矩阵具有Population Sparsity和High Dispersal的特性, 则其也会拥Lifetime Sparsity的特性. 因为根据Population Sparsity, 特征分布矩阵中只会有很少的非零项, 而根据High Dispersal, 每个特征的分布都差不多, 所以每个特征应该都是比较稀疏的, 否则就违背了M是稀疏的这一条件.

参考文献:

[1]. Sparse Filtering. Jiquan Ngiam, Pang Wei Koh, Zhenghao Chen, Sonia Bhaskar, Andrew Y. Ng.

Sparse Filtering简介的更多相关文章

  1. Sparse Filtering 学习笔记(三)目标函数的建立和求解

      Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...

  2. Sparse Filtering 学习笔记(二)好特征的刻画

      Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...

  3. Sparse Filtering 学习笔记(一)网络结构与特征矩阵

      Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...

  4. Sparse Filtering

    Sparse Filtering 当前很多的特征学习(feature learning)算法需要很多的超参数(hyper-parameter)调节, Sparse Filtering则只需要一个超参数 ...

  5. Sparse AutoEncoder简介

    1. AutoEncoder AutoEncoder是一种特殊的三层神经网络, 其输出等于输入:\(y^{(i)}=x^{(i)}\), 如下图所示: 亦即AutoEncoder想学到的函数为\(f_ ...

  6. Maven 教程(17)— Maven Profile 和 Filtering 简介

    原文地址:https://blog.csdn.net/liupeifeng3514/article/details/79774572 每个项目都会有多套运行环境(开发,测试,正式等等),不同的环境配置 ...

  7. .NET面向对象特性之“继承”

    整体简介 1.理解继承——继承关系图 2.实现继承与接口多继承 3.new. virtual.override方法 4.抽象方法和抽象类的继承 5.继承的本质 6.继承的复用性.扩展性和安全性 7.多 ...

  8. Api 和 Spi

    目录 背景Java类库中的实例如何实现这种结构?备注 背景返回目录 Java 中区分 Api 和 Spi,通俗的讲:Api 和 Spi 都是相对的概念,他们的差别只在语义上,Api 直接被应用开发人员 ...

  9. opencv 相关一个很好的博客

    http://blog.csdn.net/zouxy09/article/category/1218765 图像卷积与滤波的一些知识点 图像卷积与滤波的一些知识点zouxy09@qq.comhttp: ...

随机推荐

  1. HDU 2086 A1 = ?

    http://acm.hdu.edu.cn/showproblem.php?pid=2086 Problem Description 有如下方程:Ai = (Ai-1 + Ai+1)/2 - Ci ( ...

  2. TCP&UDP基础

    TCP TCP/IP是一种网络通讯协议,而socket则是TCP/IP网络最为通用的API,即一种应用程序接口,称为套接字.TCP是面向连接的协议,在进行数据收发前必须连接,且在收发时必须保持该连接. ...

  3. 内存区划分、内存分配、常量存储区、堆、栈、自由存储区、全局区[C++][内存管理][转载]

    http://www.cnblogs.com/JCSU/articles/1051579.html 一. 在c中分为这几个存储区1.栈 - 由编译器自动分配释放2.堆 - 一般由程序员分配释放,若程序 ...

  4. mappers标签引入映射器的四种方式

    第一种方式:mapper标签,通过resource属性引入classpath路径的相对资源 <!-- Using classpath relative resources --> < ...

  5. 过滤器将获取到的内容注入到servlet的request中

    过滤器将获取到的内容注入到servlet的request中

  6. BZOJ5319 JSOI2018列队(主席树)

    显然集合后相对位置不变最优.主席树上二分向左和向右的分界点即可.注意主席树的值域.我怎么天天就写点一眼题啊. #include<iostream> #include<cstdio&g ...

  7. 关于PHP 时区错误的问题

    php的ini文件中时区配置默认为关闭状态 这会导致调用时间函数时出错,所以要开启时区并且配置自己的时区: 查询手册找到所有的时区有: 所以修改配置为: 重启apache问题解决

  8. [UVA 10635] Prince ans Princess

    图片加载可能有点慢,请跳过题面先看题解,谢谢 这道题... 还是要点思维的... 第一眼看是个最长公共子序列,但是, \(N\le 62500\) ,并不能 \(O(n^2)\) 求 $ $ 这道题有 ...

  9. WEB入门.七 CSS布局模型

    学习内容 标准文档流 流动模型(flow model) 浮动模型(float model) CSS基本布局 能力目标 理解标准文档流 使用流动模型实现页面布局 使用浮动模型实现页面布局 掌握常用CSS ...

  10. bzoj 4332:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...