Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 17610   Accepted: 6786

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase
letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types
were derived, and so on. 



Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different
letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as 

1/Σ(to,td)d(to,td)


where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types. 

Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan. 

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that
the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

用一个7位的string代表一个编号。两个编号之间的distance代表这两个编号之间不同字母的个数。

一个编号仅仅能由还有一个编号“衍生”出来。代价是这两个编号之间对应的distance,

如今要找出一个“衍生”方案,使得总代价最小。也就是distance之和最小。

此题的关键是将问题转化为最小生成树的问题。

每个编号为图的一个顶点,顶点与顶点间的编号差即为这条边的权值,题目所要的就是我们求出最小生成树来。


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#define INF 0x3f3f3f using namespace std; const int maxn = 2000 + 50;
int f[maxn];
int map[maxn][maxn];
bool vist[maxn];
char str[maxn][10];
int ans[maxn];
int n; int find(int x, int y)
{
int cnt = 0;
for(int i=0; i<7; i++)
if( str[x][i]!=str[y][i] )
cnt++;
return cnt;
} void init()
{
memset( map, 0, sizeof(map) );
memset( vist, false, sizeof(vist) );
memset( ans, 0, sizeof(ans) );
for(int i=0; i<n; i++)
scanf( "%s", str[i] );
//for(int i=0; i<n; i++)
// printf("%s\n", str[i]);
for(int i=0; i<n; i++)
for(int j=0; j<=i; j++)
map[i][j] = map[j][i] = find(i, j);
} void prim()
{
int minc, mind;
vist[0] = true;
ans[0] = 0;
for(int i=1; i<n; i++)
ans[i] = map[0][i];
for(int j=0; j<n-1; j++)
{
minc = INF;
for(int i=0; i<n; i++)
{
if( !vist[i] && minc>ans[i] )
{
minc = ans[i];
mind = i;
}
}
if(minc != INF)
{
vist[mind] = true;
for(int i=0; i<n; i++)
if( !vist[i] && ans[i]>map[mind][i] )
ans[i] = map[mind][i];
}
}
} void output()
{
int sum = 0;
for(int i=1; i<n; i++)
sum += ans[i];
printf("The highest possible quality is 1/%d.\n", sum);
} int main()
{
while( scanf( "%d", &n )==1 &&n )
{
init();
prim();
output();
} return 0;
}

POJ 1789:Truck History(prim&amp;&amp;最小生成树)的更多相关文章

  1. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

  2. Kuskal/Prim POJ 1789 Truck History

    题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...

  3. poj 1789 Truck History

    题目连接 http://poj.org/problem?id=1789 Truck History Description Advanced Cargo Movement, Ltd. uses tru ...

  4. poj 1789 Truck History 最小生成树 prim 难度:0

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19122   Accepted: 7366 De ...

  5. POJ 1789 Truck History【最小生成树简单应用】

    链接: http://poj.org/problem?id=1789 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  6. poj 1789 Truck History 最小生成树

    点击打开链接 Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15235   Accepted:  ...

  7. POJ 1789 Truck History (最小生成树)

    Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...

  8. poj 1789 Truck History【最小生成树prime】

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21518   Accepted: 8367 De ...

  9. POJ 1789 Truck History (Kruskal)

    题目链接:POJ 1789 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks ...

  10. POJ 1789 Truck History (Kruskal 最小生成树)

    题目链接:http://poj.org/problem?id=1789 Advanced Cargo Movement, Ltd. uses trucks of different types. So ...

随机推荐

  1. CF 463D Gargari and Permutations [dp]

    给出一个长为n的数列的k个排列(1 ≤ n ≤ 1000; 2 ≤ k ≤ 5).求这个k个数列的最长公共子序列的长度 dp[i]=max{dp[j]+1,where j<i 且j,i相应的字符 ...

  2. mobile移动网页开发常用代码模板

    index.html <!DOCTYPE HTML> <html> <head> <!--申明当前页面的编码集--> <meta http-equ ...

  3. LINUX设备驱动程序笔记(五)中断处理

         <一> 中断处理流程例如以下: 1.发生中断时,CPU运行异常向量vector_irq的代码. 2.在vector_irq里面.终于会调用中断处理的总入口函数asm_do_IRQ ...

  4. Pinger

    import java.io.IOException;import java.io.InputStreamReader;import java.io.LineNumberReader;import j ...

  5. C语言打印字母金字塔(第一行是A 第二行是ABA ……)

    #include <stdio.h> #include <stdlib.h> int main() { int line;//代表行数 int i; char letter,c ...

  6. js的正则匹配 和 blur

    <script type="text/javascript" src="http://code.jquery.com/jquery-1.10.2.min.js&qu ...

  7. 单页WEB应用(三),Chat聊天模块

    Chat 聊天模块 这个模块应该就是该书全篇的唯一一个模块吧,后面差点儿全部的篇章都环绕这个模块去实现的,只是就通过这一个模块的实现和上线,也能体现单页应用开发到公布上线的整个过程,毕竟后面的数据.通 ...

  8. Appium Python 六:管理应用和Activity

    管理应用 1. 将当前应用放到后台 执行之后,应用会被放到后台特定时间.比如这里就是5秒,5秒过后,应用会重新回到前台. driver.background_app(5) 官网示例: driver.b ...

  9. Java从零开始学二十一(集合List接口)

    一.List接口 List是Collection的子接口,里面可以保存各个重复的内容,此接口的定义如下: public interface List<E> extends Collecti ...

  10. 算法笔记_117:算法集训之结果填空题集一(Java)

     目录 1 空瓶换汽水 2 三人年龄 3 考察团组成 4 微生物增殖 5 除去次方数 6 正六面体染色 7 古堡算式 8 海盗比酒量 9 奇怪的比赛 10 土地测量   1 空瓶换汽水 浪费可耻,节约 ...