link

吐槽:

好吧开学了果然忙得要死……不过为了证明我的blog还没有凉,还是跑来更一波水题

题意:

有n种物品,第i种体积为i,问装满一个大小为n的背包有多少种方案?

$n\leq 10^5.$

做法:

这种题一看就很想按根号分类是不是……

设阈值大小为$m=\sqrt n$,对于体积$\leq m$的所有物品,直接跑多重背包:

f[i][j]表示前i个物品,体积和为j的方案数,$f[i][j]=\sum f[i-1][j-ki],k\in [0,i]$。

记录sum[x]表示$\sum f[i-1][j]$其中$j\% i=x$,同时需满足当前的j和上一个状态lastj的差$\leq i^2$。这样可以把dp优化到$\mathcal{O}(n\sqrt n)$。

对于体积$>m$的所有物品,由于$i^2$一定$>n$,所以相当于完全背包:

但是当然不能直接跑完全背包,复杂度是炸的。可以发现物品的个数不超过$\sqrt n$,那么

g[i][j]表示i个物品,体积和为j的方案数(注意和f的区别),$g[i][j]=g[i][j-i]+g[i-1][j-m-1]$。

具体来说这个转移表示,要么把当前i个物品每个体积都增加1,要么插入一个体积为m+1的物品(一个构造法,恰好不重不漏地计算了所有方案)。

复杂度也是$\mathcal{O}(n\sqrt n)$。

最后把两者乘法原理合并起来即可。

题外话:51nod1259是一道类似的题,区别是它都是完全背包,更简单了些。

code:

 #include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define ll long long
using namespace std;
#define N 100005
const int mod=;
int n,m,f[][N],sum[N],g[][N],now,t,ans;
void upd(int &x,int y){x+=y;x-=x>=mod?mod:;}
int main(){
cin>>n;m=sqrt(n);now=;f[][]=;
rep (i,,m){//f[i][j]:前i个体积<=m的物品,体积和为j的方案数
now^=;memset(sum,,sizeof(sum));
rep (j,,n){
upd(f[now][j]=f[now^][j],sum[j%i]);upd(sum[j%i],f[now^][j]);
if (j>=i*i) upd(sum[j%i],mod-f[now^][j-i*i]);
}
}
ans=f[now][n];t=now;
g[][]=;now=;
rep (i,,m){//g[i][j]:i个体积都>m的物品,体积和为j的方案数
now^=;memset(g[now],,sizeof(g[now]));
rep (j,i,n){
upd(g[now][j],g[now][j-i]);
if (j>=m+) upd(g[now][j],g[now^][j-m-]);
}
rep (i,,n) upd(ans,(ll)f[t][i]*g[now][n-i]%mod);
}
cout<<ans;
return ;
}

loj6089 小 Y 的背包计数问题的更多相关文章

  1. [loj6089]小Y的背包计数问题

    https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...

  2. LOJ6089 小Y的背包计数问题(根号优化背包)

    Solutioon 这道题利用根号分治可以把复杂度降到n根号n级别. 我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制. 进一步我们发现,这个背包最多只能放根号n个物品. ...

  3. LOJ6089 小Y的背包计数问题 背包、根号分治

    题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...

  4. LOJ6089 小Y的背包计数问题 背包

    正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...

  5. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  6. LOJ #6089. 小 Y 的背包计数问题

    LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...

  7. LOJ#6089 小 Y 的背包计数问题 - DP精题

    题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...

  8. loj 6089 小 Y 的背包计数问题——分类进行的背包

    题目:https://loj.ac/problem/6089 直接多重背包,加上分剩余类的前缀和还是n^2的. 但可发现当体积>sqrt(n)时,个数的限制形同虚设,且最多有sqrt(n)个物品 ...

  9. LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP

    题目:https://loj.ac/problem/6089 对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k ...

随机推荐

  1. bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格

    洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...

  2. 【Python学习笔记】使用Python进行T检验

    使用Python进行T检验 所需要用到的第三方库有scipy. 均可以通过pip直接安装. pip install scipy numpy 引入第三方库 from scipy import stats ...

  3. /dev/mem可没那么简单【转】

    转自:http://blog.csdn.net/skyflying2012/article/details/47611399 这几天研究了下/dev/mem,发现功能很神奇,通过mmap可以将物理地址 ...

  4. poj1095

    题意:给出n,要求输出第n个二叉树,二叉树编号规则如下图所示: 分析:g[i]表示有i个节点的二叉树,有多少种.f[i][j]表示有i个节点,且左子树有j个节点的树有多少种. sumg[i]表示g数组 ...

  5. 虚拟机 windows xp sp3 原版

    原版的镜像:http://www.7xdown.com/Download.asp?ID=3319&URL=http://d5.7xdown.com/soft2/&file=Window ...

  6. 练习题 --- 写出5种css定位语法

    写出至少5种css语法(每种语法不一样)

  7. 洛谷P1455搭配购买

    传送门啦 这是强连通分量与背包的例题 需要注意的就是价值和价格两个数组不要打反了.. 另外 这是双向图!!! #include <iostream> #include <cstdio ...

  8. Javascript之对象的创建

    面向对象语言有一个非常显著的标志,那就是它们都有类的概念,通过类之间的继承就可以达到任意创建具有相同属性方法的对象.而在ECMAScript中并没有类的概念,它把对象定义为:无序属性的集合,其属性包含 ...

  9. emacs设置了单例模式后无法设定文件关联解决办法

    emacs设置单例模式的本质就是使用下列参数启动: C:\emacs-24.5\bin\emacsclientw.exe --no-wait --alternate-editor="C:\e ...

  10. xtrabckup备份报错:Failed to connect to MySQL server: Can't connect to local MySQL server through socket '/data/mysql/mysql.sock' (2).

    1.做软连接 [root@xxxxxx:/data/backup/log]# ln -s /var/lib/mysql/mysql.sock /tmp/mysql.sock [root@xxxxxxx ...