1078 最小生成树

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 白银 Silver
 
 
 
题目描述 Description

农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的 帮助。 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了使花费最少,他想铺设最短的光纤去连接所有的农场。 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。 每两个农场间的距离不会超过100000

输入描述 Input Description

第一行: 农场的个数,N(3<=N<=100)。

第二行..结尾: 接下来的行包含了一个N*N的矩阵,表示每个农场之间的距离。理论上,他们是N行,每行由N个用空格分隔的数组成,实际上,他们每行限制在80个字符以 内,因此,某些行会紧接着另一些行。当然,对角线将会是0,因为线路从第i个农场到它本身的距离在本题中没有意义。

输出描述 Output Description

只有一个输出,是连接到每个农场的光纤的最小长度和。

样例输入 Sample Input

4

0  4  9 21

4  0  8 17

9  8  0 16

21 17 16  0

样例输出 Sample Output

28

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo> typedef long long ll;
using namespace std; #define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 1001
const int inf=; //无限大
int u[maxn*maxn],v[maxn*maxn],w[maxn*maxn],r[maxn*maxn];
//两个端点存在u和v数组中,边权存在w数组中
int p[maxn*maxn];
int n,m;
int cmp(const int i,const int j)
{
return w[i]<w[j];
} //间接排序函数
int find(int x)
{
return p[x]==x?x:p[x]=find(p[x]);
}
int Kruskal()
{
int ans=;
for(int i=;i<n;i++) p[i]=i;//初始化并查集
for(int j=;j<m;j++) r[j]=j;//初始化边序号
sort(r,r+m,cmp);
for(int i=;i<m;i++)
{
int e=r[i];
int x=find(u[e]);
int y=find(v[e]);
//找到当前边两个端点所在的集合编号
if(x!=y)
{
ans+=w[e];
p[x]=y;
}
//如果在不同集合,合并
}
return ans;
}
int main()
{
int t;
cin>>t;
int flag[maxn][maxn];
memset(flag,,sizeof(flag));
n=,m=;
n=t;
int kiss;
for(int i=;i<t;i++)
{
for(int j=;j<t;j++)
{
cin>>kiss;
if(kiss==)
kiss=inf;
if(!flag[i][j])
{
flag[i][j]=;
flag[j][i]=;
u[m]=i;
v[m]=j;
w[m++]=kiss;
}
}
} cout<<Kruskal()<<endl;
return ;
}

wikioi 1078 最小生成树 Kruskal算法的更多相关文章

  1. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  2. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  3. 最小生成树Kruskal算法

    Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...

  4. 最小生成树------Kruskal算法

    Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...

  5. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  6. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  7. 算法实践--最小生成树(Kruskal算法)

    什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...

  8. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  9. 数据结构之最小生成树Kruskal算法

    1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...

随机推荐

  1. Docker基础速成(一)

    Docker基础速成(一) 给亲爱的写的docker基础速成,按照步骤操作,实践出真知,希望有提纲挈领之功效 1.docker简介 Docker 轻量级容器,如图,类似于一个个集装箱,把复杂或者零散的 ...

  2. Flask:静态文件&模板(0.1)

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2 前面看了Flask的Quickstart文档,可是,一直没有练习里面的内容,这不,刚刚练习完毕,来写篇博文记录一下! ...

  3. Git系统学习网址

    https://code.csdn.net/help/CSDN_Code/progit/zh/07-customizing-git/01-chapter7

  4. 【笔记】jQuery插件开发指南

    原文链接:http://www.cnblogs.com/Wayou/p/jquery_plugin_tutorial.html (有部分增删和修改) jQuery插件开发模式 软件开发过程中是需要一定 ...

  5. NOIP2015 D2T3 运输计划

    拿到题目的第一眼 首先这是一棵n个节点的树(别说你看不出来) 然后对于树上的m条链我们可以选取树上的唯一一条边使它的边权变为0 求处理后最长链的长度 20分 m=1好啦,好像可做一眼望去全是水 只需求 ...

  6. Kubernetes 概述和搭建(多节点)

    一.Kubernetes整体概述和架构 Kubernetes是什么 Kubernetes是一个轻便的和可扩展的开源平台,用于管理容器化应用和服务.通过Kubernetes能够进行应用的自动化部署和扩缩 ...

  7. Asp.net Vnext 中间件实现基本验证

    概述 本文已经同步到<Asp.net Vnext 系列教程 >中] vnext 没有 web.config 可以配置基本验证,本文使用中间件实现基本验证 实现 通过Startup(启动类) ...

  8. python开发之路Day17-算法设计(冒泡排序、选择排序、插入排序、二叉树)

    s12-20160514-day17 *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: ...

  9. 关于 eclipse启动卡死的问题 解决方法

    关于 eclipse启动卡死的问题(eclipse上一次没有正确关闭,导致启动的时候卡死错误解决方法),自己常用的解决方法: 方案一(推荐使用,如果没有这个文件,就使用方案二): 到<works ...

  10. 构建第一个Spring Boot项目

    1.启动IntelliJ IDEA,点击"Create New Project"  2.选择"Spring initializr",设定SDK及Spring ...