shuffle的过程分析

shuffle阶段其实就是之前《MapReduce的原理及执行过程》中的步骤2.1。多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。

Map端:

  1、在map端首先接触的是InputSplit,在InputSplit中含有DataNode中的数据,每一个InputSplit都会分配一个Mapper任务,Mapper任务结束后产生<K2,V2>的输出,这些输出先存放在缓存中,每个map有一个环形内存缓冲区,用于存储任务的输出。默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spil l.percent),一个后台线程就把内容写到(spill)Linux本地磁盘中的指定目录(mapred.local.dir)下的新建的一个溢出写文件。(注意:map过程的输出是写入本地磁盘而不是HDFS,但是一开始数据并不是直接写入磁盘而是缓冲在内存中,缓存的好处就是减少磁盘I/O的开销,提高合并和排序的速度。又因为默认的内存缓冲大小是100M(当然这个是可以配置的),所以在编写map函数的时候要尽量减少内存的使用,为shuffle过程预留更多的内存,因为该过程是最耗时的过程。)

  2、写磁盘前,要进行partition、sort和combine等操作。通过分区,将不同类型的数据分开处理,之后对不同分区的数据进行排序,如果有Combiner,还要对排序后的数据进行combine。等最后记录写完,将全部溢出文件合并为一个分区且排序的文件。(注意:在写磁盘的时候采用压缩的方式将map的输出结果进行压缩是一个减少网络开销很有效的方法!)

  3、最后将磁盘中的数据送到Reduce中,从图中可以看出Map输出有三个分区,有一个分区数据被送到图示的Reduce任务中,剩下的两个分区被送到其他Reducer任务中。而图示的Reducer任务的其他的三个输入则来自其他节点的Map输出。

Reduce端:

  1、Copy阶段:Reducer通过Http方式得到输出文件的分区。

  reduce端可能从n个map的结果中获取数据,而这些map的执行速度不尽相同,当其中一个map运行结束时,reduce就会从JobTracker中获取该信息。map运行结束后TaskTracker会得到消息,进而将消息汇报给  JobTracker,reduce定时从JobTracker获取该信息,reduce端默认有5个数据复制线程从map端复制数据。

  2、Merge阶段:如果形成多个磁盘文件会进行合并

  从map端复制来的数据首先写到reduce端的缓存中,同样缓存占用到达一定阈值后会将数据写到磁盘中,同样会进行partition、combine、排序等过程。如果形成了多个磁盘文件还会进行合并,最后一次合并的结果作为reduce的输入而不是写入到磁盘中。

  3、Reducer的参数:最后将合并后的结果作为输入传入Reduce任务中。(注意:当Reducer的输入文件确定后,整个Shuffle操作才最终结束。之后就是Reducer的执行了,最后Reducer会把结果存到HDFS上。)

shuffle过程分析的更多相关文章

  1. spark shuffle过程分析

    spark shuffle流程分析 回到ShuffleMapTask.runTask函数 如今回到ShuffleMapTask.runTask函数中: overridedef runTask(cont ...

  2. spark源码阅读--shuffle过程分析

    ShuffleManager(一) 本篇,我们来看一下spark内核中另一个重要的模块,Shuffle管理器ShuffleManager.shuffle可以说是分布式计算中最重要的一个概念了,数据的j ...

  3. MapReduce的原理及执行过程

    MapReduce简介 MapReduce是一种分布式计算模型,是Google提出的,主要用于搜索领域,解决海量数据的计算问题. MR有两个阶段组成:Map和Reduce,用户只需实现map()和re ...

  4. 历时小半年总结之JAVA

    一.JavaSE 1.多线程 (1).进程与线程的区别? 答:进程是所有线程的集合,每一个线程是进程中的一条执行路径,线程只是一条执行路径. (2).为什么要用多线程? 答:提高程序效率 (3).多线 ...

  5. shuffle的过程分析

    shuffle的过程分析 shuffle阶段其实就是之前<MapReduce的原理及执行过程>中的步骤2.1.多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点 ...

  6. Spark Shuffle模块——Suffle Read过程分析

    在阅读本文之前.请先阅读Spark Sort Based Shuffle内存分析 Spark Shuffle Read调用栈例如以下: 1. org.apache.spark.rdd.Shuffled ...

  7. MapReduce shuffle的过程分析

    shuffle阶段其实就是多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上. Map端: 1.在map端首先接触的是InputSplit,在InputSplit中含有D ...

  8. Task的运行过程分析

    Task的运行过程分析 Task的运行通过Worker启动时生成的Executor实例进行, caseRegisteredExecutor(sparkProperties)=> logInfo( ...

  9. 《Hadoop技术内幕》读书笔记——Task运行过程分析

    本文是董西成的Hadoop技术内幕一书的读书章节总结. 第八章 Task运行过程分析 所有Task需要周期性地向TaskTracker汇报最新进度和计数器值,而这正是由Reporter组件实现的,其中 ...

随机推荐

  1. python---requests和beautifulsoup4模块的使用

    Requests:是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得 ...

  2. hdu 3065病毒侵袭持续中

    病毒侵袭持续中 http://acm.hdu.edu.cn/showproblem.php?pid=3065 Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  3. 翻译: 星球生成 II

    翻译: 星球生成 II 本文翻译自Planet Generation - Part II 译者: FreeBlues 以下为译文: 概述 在前一章 我解释了如何为星球创建一个几何球体. 在本文中, 我 ...

  4. 初等数论及其应用——Lucas定理

    Lucas定理用于解决较大组合数的取模问题,下面的理论整理源自冯志刚的<初等数论>,其与百度百科上呈现的Lucas定理形式上不同,但是容易看到二者的转化形式. 首先我们来整理一下冯志刚的& ...

  5. 第二回 C#和JAVA 语法差异性对比

    1.继承  C#用 :  java用 extends 继承父类   implements 2.Java : 一个源文件中只能有一个public类  可以有多个非public类  源文件的名称应该和pu ...

  6. 全解析jQuery插件开发!很好很强大!

    最近对JQuery插件开发超级感兴趣,看到这样一篇好文章,可以说是<用实例一步步教你写Jquery插件>的十全大补,大家可以两篇结合着看看! jQuery插件的开发包括两种: 一种是类级别 ...

  7. 内核:为了fan的健康,我的重新编译记录

    email: jiqingwu@gmail.com date: 2008-02-13 关键词:ubuntu cpu cpufreqd cpufrequtils 编译 内核 装上ubuntu7.10后, ...

  8. 51nod1312 最大异或和

    题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 320  有一个正整数数组S,S中有N个元素,这些元素分别是S[0],S[1],S[2]...,S[N-1]. ...

  9. 让PHPCms内容页支持JavaScript的修改方法

    在文件..\caches\caches_model\caches_data\content_input.class.php中找到函数: function get($data,$isimport = 0 ...

  10. HDU 2094 产生冠军 dfs加map容器

    解题报告:有一群人在打乒乓球比赛,需要在这一群人里面选出一个冠军,现在规定,若a赢了b,b又赢了c那么如果a与c没有比赛的话,就默认a赢了c,而如果c赢了a的话,则这三个人里面选不出冠军,还有就是如果 ...