Description

  

​   数学老师走啦,英语老师来上课啦

  ​ 他的性格与众不同,又因为大家都是理科班的学生

  ​ 他希望大家在数字母的过程中领悟英语的快乐

​   他用m种字母进行排列组合,

​   得到了所有不同的,长度为n的字符串

​   (不需要所有字母都出现在字符串中)

  ​ 对于每个字符串s

​   定义C(s)为s中出现次数最多的字母的出现次数

​   那么问题来了

​   所有的这些字符集大小为m,长度为n的字符串中

​   C(s)=k的有多少个呢

  

Input

  

​   一行三个整数n,m,k,分别表示长度,字符集和要求的C(s)

  

Output

  

​   输出一行表示结果

​   答案对998244353取模

  

Sample Input

  

​   3 2 2

  

Sample Output

  

​   6

  

HINT

  

​   数据保证k≤n

​   对于10%的数据,1≤n,m≤8

​   对于30%的数据,1≤n,m≤200

​   对于50%的数据,1≤n,m≤1000

​   对于100%的数据,1≤n,m≤50000

  

​   样例解释:

  

​   假设样例中的两个字母为a,b

​   则满足条件的有aab,aba,abb,baa,bab,bba六个

    

  

  

Solution

  

​   首先把最直观的DP方程列出来。

  

  记\(f[i][j][k]\)为当前考虑到第\(i\)个字母,已经使用了串中的\(j\)个位置,出现最多的字母次数不超过\(k\)的方案数。答案就是\(f[m][n][k]-f[m][n][k-1]\)。

   

​   转移方程显然是枚举当前字母使用多少次:

\[f[i][j][k]=\sum_{x=0}^k {j\choose x}f[i-1][j-x][k]
\]

  ​ 然后可以发现\(k\)十分的冗余,并没有参与转移。也就是说\(k\)仅仅作用于循环范围控制上。

  

​   我们尝试把最后一维省掉:\(f[i][j]\)。\(k\)仍然发挥作用,也就是现在的\(f[i][j]\)对应着原来的\(f[i][j][k]\)。

  

  ​ 现在看看方程:

\[\begin{aligned}
f[i][j]&=\sum_{x=0}^k{j\choose x}f[i-1][j-x]\\
&=\sum_{x=0}^k\frac{j!}{x!(j-x)!}f[i-1][j-x]\\
\frac{f[i][j]}{j!}&=\sum_{x=0}^k\;x!\;\frac{f[i-1][j-x]}{(j-x)!}
\end{aligned}
\]

​   后面显然是一个卷积的形式,并且等号左边的形式和卷积右半边的形式一样。所以可以把每个\(f[i]\)看做一个多项式

  

\[f[i]=\frac{f[i][0]}{0!}+\frac{f[i][1]}{1!}x+\frac{f[i][2]}{2!}x^2+...+\frac{f[i][n]}{n!}x^n
\]

  

​   转移就是这个多项式和

  

\[T(x)=\frac1{0!}+\frac1{1!}x+\frac1{2!}x^2...+\frac1{k!}x^k
\]

  

  ​ 的卷积。即\(f[n]=f[0]*T^{n}(x)\)

  

​   而\(T(x)\)是独立的存在不受其他东西影响,所以将\(T(x)\)用快速幂自卷积一下,再用\(f[0]\)卷积一下就好了。根据定义,\(f[0]=1\),所以相当于直接求\(T(x)\)的\(n\)次方。答案别忘了乘上\(n\)的阶乘。

  

#include <cstdio>
#include <cstring>
using namespace std;
const int N=50005,MOD=998244353,G=3,B17=131100;
int fact[N],iact[N];
inline void swap(int &x,int &y){x^=y^=x^=y;}
inline int pow(int x,int y){
int res=1;
for(;y;x=1LL*x*x%MOD,y>>=1)
if(y&1) res=1LL*res*x%MOD;
return res;
}
namespace NTT{/*{{{*/
int n,invn,bit,rev[B17],W[B17][2];
void build(){
int b=pow(G,MOD-2);
for(int i=0;i<=17;i++){
W[1<<i][0]=pow(G,(MOD-1)/(1<<i));
W[1<<i][1]=pow(b,(MOD-1)/(1<<i));
}
}
void init(int _n){
for(n=1,bit=0;n<_n;n<<=1,bit++);
invn=pow(n,MOD-2);
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void clear(int *a){for(int i=0;i<n;i++)a[i]=0;}
void ntt(int *a,int f){
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
int u,v,w_n,w;
for(int i=2;i<=n;i<<=1){
w_n=W[i][f==-1];
for(int j=0;j<n;j+=i){
w=1;
for(int k=0;k<i/2;k++){
u=a[j+k]; v=1LL*w*a[j+i/2+k]%MOD;
a[j+k]=(u+v)%MOD; a[j+i/2+k]=(u-v)%MOD;
w=1LL*w*w_n%MOD;
}
}
}
if(f==-1)
for(int i=0;i<n;i++) a[i]=1LL*a[i]*invn%MOD;
}
}/*}}}*/
void ksm(int *x,int y,int n,int *res){
NTT::init((n+1)*2);
NTT::clear(res);
res[0]=1;
for(;y;y>>=1){
NTT::ntt(x,1);
if(y&1){
NTT::ntt(res,1);
for(int i=0;i<NTT::n;i++) res[i]=1LL*res[i]*x[i]%MOD;
NTT::ntt(res,-1);
for(int i=n+1;i<NTT::n;i++) res[i]=0;
}
for(int i=0;i<NTT::n;i++) x[i]=1LL*x[i]*x[i]%MOD;
NTT::ntt(x,-1);
for(int i=n+1;i<NTT::n;i++) x[i]=0;
}
}
int solve(int n,int m,int k){
static int a[B17],b[B17];
memset(a,0,sizeof a);
for(int i=0;i<=k;i++) a[i]=iact[i];
ksm(a,m,n,b);
return 1LL*fact[n]*b[n]%MOD;
}
int main(){
freopen("input.in","r",stdin);
NTT::build();
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
fact[0]=1;
for(int i=1;i<=n;i++) fact[i]=1LL*fact[i-1]*i%MOD;
iact[n]=pow(fact[n],MOD-2);
for(int i=n-1;i>=0;i--) iact[i]=1LL*iact[i+1]*(i+1)%MOD;
int ans=(solve(n,m,k)-solve(n,m,k-1))%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
return 0;
}

Counting的更多相关文章

  1. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)

    来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS   Memory Limit: 65536 ...

  3. ZOJ3944 People Counting ZOJ3939 The Lucky Week (模拟)

    ZOJ3944 People Counting ZOJ3939 The Lucky Week 1.PeopleConting 题意:照片上有很多个人,用矩阵里的字符表示.一个人如下: .O. /|\ ...

  4. find out the neighbouring max D_value by counting sort in stack

    #include <stdio.h> #include <malloc.h> #define MAX_STACK 10 ; // define the node of stac ...

  5. 1004. Counting Leaves (30)

    1004. Counting Leaves (30)   A family hierarchy is usually presented by a pedigree tree. Your job is ...

  6. 6.Counting Point Mutations

    Problem Figure 2. The Hamming distance between these two strings is 7. Mismatched symbols are colore ...

  7. 1.Counting DNA Nucleotides

    Problem A string is simply an ordered collection of symbols selected from some alphabet and formed i ...

  8. uva 11401 Triangle Counting

    // uva 11401 Triangle Counting // // 题目大意: // // 求n范围内,任意选三个不同的数,能组成三角形的个数 // // 解题方法: // // 我们设三角巷的 ...

  9. JSONKit does not support Objective-C Automatic Reference Counting(ARC) / ARC forbids Objective-C objects in struct

    当我们在使用JSONKit处理数据时,直接将文件拉进项目往往会报这两个错“JSONKit   does not support Objective-C Automatic Reference Coun ...

  10. iOS开发 JSonKit does not support Objective-C Automatic Reference Counting(ARC)

    有使用JSonKit的朋友,如果遇到“JSonKit does not support Objective-C Automatic Reference Counting(ARC)”这种情况,可参照如下 ...

随机推荐

  1. elementUI实现前端分页

    按照他的文档来写分页,最主要的是el-table里面展示的数据怎么处理 <el-table :data="AllCommodityList.slice((currentPage-1)* ...

  2. STUN, TURN, ICE介绍

    STUN STUN协议为终端提供一种方式能够获知自己经过NAT映射后的地址,从而替代位于应用层中的私网地址,达到NAT穿透的目的.STUN协议是典型的Client-Server协议,各种具体应用通过嵌 ...

  3. partprobe命令详解

    基础命令学习目录首页 原文链接:https://www.jb51.net/LINUXjishu/389836.html linux上,在安装系统之后,可否创建分区并且在不重新启动机器的情况下系统能够识 ...

  4. url的param与dict转换

    urllib.parse.urlencode urlencode from urllib import parse from urllib.request import urlopen from ur ...

  5. fetch err : "Body not allowed for GET or HEAD requests"

    在使用 fetch 的时候 报了  "Body not allowed for GET or HEAD requests" 这个错. 代码如下: 一番google , 找到答案了. ...

  6. 个人作业-Week 1

    1)快速看完整部教材,列出你仍然不懂的5到10个问题,发布在你的个人博客上. Q1:"Scrum Master不是一个官,而是一个没有行政权力的沟通者,就像微软的PM那样.他/她同时还要在团 ...

  7. 软工实践-Beta 冲刺 (7/7)

    队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 1.界面的修改与完善 展示GitHub当日代码/文档签入记 ...

  8. BNUOJ 52305 Around the World 树形dp

    题目链接: https://www.bnuoj.com/v3/problem_show.php?pid=52305 Around the World Time Limit: 20000msMemory ...

  9. BETA-3

    前言 我们居然又冲刺了·三 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 一堆deadline截至前的两天,为了图形学和编译原理毅然决然地放弃冲刺 接下 ...

  10. VirtualBox安装及Linux基本操作(操作系统实验一)

    VirtualBox安装教程博客链接(转载)https://blog.csdn.net/u012732259/article/details/70172704 实验名称:Linux的基本操作 实验目的 ...