Counting
Description
数学老师走啦,英语老师来上课啦
他的性格与众不同,又因为大家都是理科班的学生
他希望大家在数字母的过程中领悟英语的快乐
他用m种字母进行排列组合,
得到了所有不同的,长度为n的字符串
(不需要所有字母都出现在字符串中)
对于每个字符串s
定义C(s)为s中出现次数最多的字母的出现次数
那么问题来了
所有的这些字符集大小为m,长度为n的字符串中
C(s)=k的有多少个呢
Input
一行三个整数n,m,k,分别表示长度,字符集和要求的C(s)
Output
输出一行表示结果
答案对998244353取模
Sample Input
3 2 2
Sample Output
6
HINT
数据保证k≤n
对于10%的数据,1≤n,m≤8
对于30%的数据,1≤n,m≤200
对于50%的数据,1≤n,m≤1000
对于100%的数据,1≤n,m≤50000
样例解释:
假设样例中的两个字母为a,b
则满足条件的有aab,aba,abb,baa,bab,bba六个
Solution
首先把最直观的DP方程列出来。
记\(f[i][j][k]\)为当前考虑到第\(i\)个字母,已经使用了串中的\(j\)个位置,出现最多的字母次数不超过\(k\)的方案数。答案就是\(f[m][n][k]-f[m][n][k-1]\)。
转移方程显然是枚举当前字母使用多少次:
\]
然后可以发现\(k\)十分的冗余,并没有参与转移。也就是说\(k\)仅仅作用于循环范围控制上。
我们尝试把最后一维省掉:\(f[i][j]\)。\(k\)仍然发挥作用,也就是现在的\(f[i][j]\)对应着原来的\(f[i][j][k]\)。
现在看看方程:
f[i][j]&=\sum_{x=0}^k{j\choose x}f[i-1][j-x]\\
&=\sum_{x=0}^k\frac{j!}{x!(j-x)!}f[i-1][j-x]\\
\frac{f[i][j]}{j!}&=\sum_{x=0}^k\;x!\;\frac{f[i-1][j-x]}{(j-x)!}
\end{aligned}
\]
后面显然是一个卷积的形式,并且等号左边的形式和卷积右半边的形式一样。所以可以把每个\(f[i]\)看做一个多项式
\]
转移就是这个多项式和
\]
的卷积。即\(f[n]=f[0]*T^{n}(x)\)
而\(T(x)\)是独立的存在不受其他东西影响,所以将\(T(x)\)用快速幂自卷积一下,再用\(f[0]\)卷积一下就好了。根据定义,\(f[0]=1\),所以相当于直接求\(T(x)\)的\(n\)次方。答案别忘了乘上\(n\)的阶乘。
#include <cstdio>
#include <cstring>
using namespace std;
const int N=50005,MOD=998244353,G=3,B17=131100;
int fact[N],iact[N];
inline void swap(int &x,int &y){x^=y^=x^=y;}
inline int pow(int x,int y){
int res=1;
for(;y;x=1LL*x*x%MOD,y>>=1)
if(y&1) res=1LL*res*x%MOD;
return res;
}
namespace NTT{/*{{{*/
int n,invn,bit,rev[B17],W[B17][2];
void build(){
int b=pow(G,MOD-2);
for(int i=0;i<=17;i++){
W[1<<i][0]=pow(G,(MOD-1)/(1<<i));
W[1<<i][1]=pow(b,(MOD-1)/(1<<i));
}
}
void init(int _n){
for(n=1,bit=0;n<_n;n<<=1,bit++);
invn=pow(n,MOD-2);
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void clear(int *a){for(int i=0;i<n;i++)a[i]=0;}
void ntt(int *a,int f){
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
int u,v,w_n,w;
for(int i=2;i<=n;i<<=1){
w_n=W[i][f==-1];
for(int j=0;j<n;j+=i){
w=1;
for(int k=0;k<i/2;k++){
u=a[j+k]; v=1LL*w*a[j+i/2+k]%MOD;
a[j+k]=(u+v)%MOD; a[j+i/2+k]=(u-v)%MOD;
w=1LL*w*w_n%MOD;
}
}
}
if(f==-1)
for(int i=0;i<n;i++) a[i]=1LL*a[i]*invn%MOD;
}
}/*}}}*/
void ksm(int *x,int y,int n,int *res){
NTT::init((n+1)*2);
NTT::clear(res);
res[0]=1;
for(;y;y>>=1){
NTT::ntt(x,1);
if(y&1){
NTT::ntt(res,1);
for(int i=0;i<NTT::n;i++) res[i]=1LL*res[i]*x[i]%MOD;
NTT::ntt(res,-1);
for(int i=n+1;i<NTT::n;i++) res[i]=0;
}
for(int i=0;i<NTT::n;i++) x[i]=1LL*x[i]*x[i]%MOD;
NTT::ntt(x,-1);
for(int i=n+1;i<NTT::n;i++) x[i]=0;
}
}
int solve(int n,int m,int k){
static int a[B17],b[B17];
memset(a,0,sizeof a);
for(int i=0;i<=k;i++) a[i]=iact[i];
ksm(a,m,n,b);
return 1LL*fact[n]*b[n]%MOD;
}
int main(){
freopen("input.in","r",stdin);
NTT::build();
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
fact[0]=1;
for(int i=1;i<=n;i++) fact[i]=1LL*fact[i-1]*i%MOD;
iact[n]=pow(fact[n],MOD-2);
for(int i=n-1;i>=0;i--) iact[i]=1LL*iact[i+1]*(i+1)%MOD;
int ans=(solve(n,m,k)-solve(n,m,k-1))%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
return 0;
}
Counting的更多相关文章
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)
来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS Memory Limit: 65536 ...
- ZOJ3944 People Counting ZOJ3939 The Lucky Week (模拟)
ZOJ3944 People Counting ZOJ3939 The Lucky Week 1.PeopleConting 题意:照片上有很多个人,用矩阵里的字符表示.一个人如下: .O. /|\ ...
- find out the neighbouring max D_value by counting sort in stack
#include <stdio.h> #include <malloc.h> #define MAX_STACK 10 ; // define the node of stac ...
- 1004. Counting Leaves (30)
1004. Counting Leaves (30) A family hierarchy is usually presented by a pedigree tree. Your job is ...
- 6.Counting Point Mutations
Problem Figure 2. The Hamming distance between these two strings is 7. Mismatched symbols are colore ...
- 1.Counting DNA Nucleotides
Problem A string is simply an ordered collection of symbols selected from some alphabet and formed i ...
- uva 11401 Triangle Counting
// uva 11401 Triangle Counting // // 题目大意: // // 求n范围内,任意选三个不同的数,能组成三角形的个数 // // 解题方法: // // 我们设三角巷的 ...
- JSONKit does not support Objective-C Automatic Reference Counting(ARC) / ARC forbids Objective-C objects in struct
当我们在使用JSONKit处理数据时,直接将文件拉进项目往往会报这两个错“JSONKit does not support Objective-C Automatic Reference Coun ...
- iOS开发 JSonKit does not support Objective-C Automatic Reference Counting(ARC)
有使用JSonKit的朋友,如果遇到“JSonKit does not support Objective-C Automatic Reference Counting(ARC)”这种情况,可参照如下 ...
随机推荐
- OpenSSH技术详解
一.什么是Openssh OpenSSH 是 SSH (Secure SHell) 协议的免费开源实现.SSH协议族可以用来进行远程控制, 或在计算机之间传送文件.而实现此功能的传统方式,如teln ...
- beego跨域请求配置
不说废话 在main函数前加入如下代码 func init() { //跨域设置 var FilterGateWay = func(ctx *context.Context) {ctx.Respons ...
- python的字符串格式化
1.python到底有那几种字符串格式化模块? python有3种格式化字符串的方法: 传统的%字符串格式符 str.format函数 字符串模版template 新的python 3.6+还提供了新 ...
- 【总结】Java面试题
部分转自 https://blog.csdn.net/junchi_/article/details/79754032 一.String特性.StringBuffer 和 StringBuilder ...
- AtCoder | ARC102 | 瞎讲报告
目录 ARC102 前言 正文 传送链接~ ARC102 前言 实在是太菜了....写完第一题就弃疗..感觉T3好歹也是道可做题吧!!然后T2怎么又是进制拆分! 正文 A 题意 给你两个数字\(n,k ...
- thrift0.5入门操作
在探索未知的程序之前,我们往往会使用“Hello World”这个经典的输出作为测试,为了遵循这个惯例,作为thrift菜鸟都不算的一员,决定跑一下“Hello world”正式进入菜鸟的行列. th ...
- python之爬虫_并发(串行、多线程、多进程、异步IO)
并发 在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢 import requests def fetch_async(url): res ...
- js备忘录3
JavaScript也有类型转换 js中的获取指定位数的方法 +和-的转换方向不同 在JavaScript中首先给变量赋值数字,然后再给变量赋值字符串是合法的 这点和Java有些区别 在函数体内声明变 ...
- a标签的href为空的问题
在表格里写一个a标签链接刷新表格的时候,没注意,把a标签的href设置为""空字符串,导致每次刷新表格之后会再刷新一次整体页面,找了很久都没发现问题出在哪里,最后无意之间,鼠标在一 ...
- 暑假作业app博客
一.光照传感器 界面 简介 运用了传感器类,通过手机的感应区根据当时的光照强度显示出数据. 核心代码 protected void onCreate(Bundle savedInstanceState ...