[NOI2016]区间

LG传送门

考虑到这题的代价是最长边减最短边,可以先把边按长度排个序,双指针维护一个尺取的过程,如果存在包含某个点的区间数\(\ge m\),就更新答案并把左指针右移,这样做的正确性显然。考虑怎样维护是否有覆盖数\(\ge m\)的点,将线段的端点离散化之后用一棵权值线段树直接维护就行了。

#include <cstdio>
#include <cctype>
#include <algorithm>
#define R register
#define I inline
#define B 1000000
using namespace std;
const int N = 500003, S = 1e9;
char buf[B], *p1, *p2;
I char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, B, stdin), p1==p2) ? EOF : *p1++; }
I int rd() {
R int f = 0;
R char c = gc();
while (c < 48 || c > 57) c = gc();
while (c > 47 && c < 58) f = f * 10 + (c ^ 48), c = gc();
return f;
}
int a[N << 1];
struct segment { int l, r, d; }s[N];
struct segtree { int v, d; }e[N << 3];
I int operator < (segment x, segment y) { return x.d < y.d; }
I int min(int x, int y) { return x < y ? x : y; }
I int max(int x, int y) { return x > y ? x : y; }
I void update(int k, int v) { e[k].v += v, e[k].d += v; }
I void pushup(int k, int p, int q) { e[k].v = max(e[p].v, e[q].v); }
I void pushdown(int k, int p, int q) {
if (e[k].d)
update(p, e[k].d), update(q, e[k].d), e[k].d = 0;
}
void modify(int k, int l, int r, int x, int y, int v) {
if (x <= l && r <= y) {
update(k, v);
return ;
}
R int p = k << 1, q = p | 1, m = l + r >> 1;
pushdown(k, p, q);
if (x <= m)
modify(p, l, m, x, y, v);
if (m < y)
modify(q, m + 1, r, x, y, v);
pushup(k, p, q);
}
int main() {
R int n = rd(), m = rd(), i, j, k, x, y, ans = S;
for (i = 1; i <= n; ++i)
a[i] = x = rd(), a[i + n] = y = rd(), s[i] = (segment){x, y, y - x};
sort(s + 1, s + n + 1), sort(a + 1, a + (n << 1 | 1)), k = unique(a + 1, a + (n << 1 | 1)) - a - 1;
for (i = 1, j = 1; i <= n; ++i) {
modify(1, 1, k, lower_bound(a + 1, a + k + 1, s[i].l) - a, lower_bound(a + 1, a + k + 1, s[i].r) - a, 1);
while (e[1].v > m)
modify(1, 1, k, lower_bound(a + 1, a + k + 1, s[j].l) - a, lower_bound(a + 1, a + k + 1, s[j].r) - a, -1), ++j;
while (e[1].v == m)
ans = min(ans, s[i].d - s[j].d), modify(1, 1, k, lower_bound(a + 1, a + k + 1, s[j].l) - a, lower_bound(a + 1, a + k + 1, s[j].r) - a, -1), ++j;
}
ans ^ S ? printf("%d", ans) : printf("-1");
return 0;
}

[NOI2016]区间 线段树的更多相关文章

  1. Luogu P1712 [NOI2016]区间(线段树)

    P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...

  2. UOJ222 NOI2016 区间 线段树+FIFO队列

    首先将区间按长度排序后离散化端点(这里的“长度”指的是离散化之前区间的实际长度) 然后模拟一个队列,区间按排好的顺序依次进入,直到某个点被覆盖了M次.之后依次出队,直到所有点都被覆盖小于M次 修改和询 ...

  3. BZOJ.4653.[NOI2016]区间(线段树)

    BZOJ4653 UOJ222 考虑二分.那么我们可以按区间长度从小到大枚举每个区间,对每个区间可以得到一个可用区间长度范围. 我们要求是否存在一个点被这些区间覆盖至少\(m\)次.这可以用线段树区间 ...

  4. BZOJ4653 [NOI2016]区间 [线段树,离散化]

    题目传送门 区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就 ...

  5. BZOJ4653: [Noi2016]区间(线段树 双指针)

    题意 题目链接 Sol 按照dls的说法,一般这一类的题有两种思路,一种是枚举一个点\(M\),然后check它能否成为答案.但是对于此题来说好像不好搞 另一种思路是枚举最小的区间长度是多少,这样我们 ...

  6. 洛谷$P1712\ [NOI2016]$区间 线段树

    正解:线段树 解题报告: 传送门$QwQ$ $umm$很久以前做的了来补个题解$QwQ$ 考虑给每个区间按权值($r-l$从大往小排序,依次加入,然后考虑如果有一个位置被覆盖次数等于$m$了就可以把权 ...

  7. BZOJ4653:[NOI2016]区间(线段树)

    Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x ...

  8. hdu 1540 Tunnel Warfare (区间线段树(模板))

    http://acm.hdu.edu.cn/showproblem.php?pid=1540 Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others) ...

  9. BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)

    题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...

随机推荐

  1. 全自动LTI部署OS

    全自动LTI部署OS:零.通过ADK制作WinPE(需包含有imagex.exe工具,用来捕获映像)一.使用WinPE中的imagex捕获映像(install.wim)二.使用MDT制作启动映像(bo ...

  2. Squid安装配置和使用

    文:铁乐与猫 环境 centos 6.5 x64 安装 最简单的一种就是yum安装. yum install squid 版本 rpm -qa | grep squid squid-3.1.23-16 ...

  3. 01-urllib库添加headers的一般方法

    2018-08-23 13:07:57 对于请求一些网站,我们需要加上请求头才可以完成网页的抓取,不然会得到一些错误,无法返回抓取的网页.下面,介绍两种添加请求头的方法. 方法一:借助build_op ...

  4. Alpha 冲刺报告(10/10)

    Alpha 冲刺报告(10/10) 队名:洛基小队 峻雄(组长) 已完成:阿尔法版的ppt 明日计划:总结阿尔法版的问题 剩余任务:角色属性脚本的完整版本 困难:缺乏编码经验,编码进度比较慢 ---- ...

  5. Zeal——好用的离线 API 文档大全!

    介绍 作为一名程序员,工作中学习中免不了是要查询API文档的,毕竟我们能记住的东西有限,而且经常也会碰到某个API一时想不起来的情况,而每次还要打开网页去查询还是挺麻烦的,这时候拥有一个款好用的本地离 ...

  6. JavaScript基础进阶之数组方法总结

    数组常用方法总结:  下面我只总结了es3中常用的数组方法,一共有11个.es5中新增的9个数组方法,后续再单独总结. 1个连接数组的方法:concat() 2个数组转换为字符串的方法:join(). ...

  7. CR与LF

    CR与LF CR(carriage return),中文名称"回车":LF(line feed),中文名称"换行".无论是初学编程的小白还是入行十年的资深,总会 ...

  8. 页面中图片以背景图形式展示好还是以img标签形式展示

    img和background-image的异同: img是网页结构层面上的标签,页面中多一个img标签就会多一次http请求,且当我们浏览页面时,img标签作为网页结构的一部分,会在浏览器加载结构的过 ...

  9. Hadoop学习之路(九)HDFS深入理解

    HDFS的优点和缺点 HDFS的优点 1.可构建在廉价机器上 通过多副本提高可靠性,提供了容错和恢复机制 服务器节点的宕机是常态   必须理性对象 2.高容错性 数据自动保存多个副本,副本丢失后,自动 ...

  10. Sublime Text常用设置之个人配置

    一.安装 1.安装包下载:  http://www.sublimetext.com/3 (傻瓜式安装) 2.Package Control安装: 1)Ctrl+~或者View——Show Consol ...