【FCS NOI2018】福建省冬摸鱼笔记 day2
第二天。
同学还是不带本子记笔记。dalao。
第二天:图论,讲师:@ExfJoe
全程划水,前面都讲水算法【虽然我可能已经忘记了】什么最短路,Tarjan,最小生成树,2SAT,差分约束啥的,我现在肯定写不出来啦。
后面题目也还挺好,可能是听的比较懂的一天吧。不过也很有挑战性。
中午划水
还以为下午的题目会和上午有关系,事实证明我想太多。
T1想了个错误分块,写了n久挂了,不想调,正解主席树。
T2简单数学题,瞎推式子就完了,后悔没有去做啊。
T3毒瘤模拟题,什么切比雪夫,什么曼哈顿,什么奇偶分开,反正不想做。
爆零选手很难受。
【T2】
题面:对两个排列定义函数\(F(P_1,P_2)=\sum_{l=1}^{n}\sum_{r=l}^{n}f_{E}(P_1[l\cdots r],P_2[l\cdots r])\)。而\(f_{E}(a,b)\)表示\(a,b\)离散后顺序是否一样,且\(a,b\)的逆序对数是否不超过\(E\),例如\(f_{1}([2,1,3],[6,3,8])=1\),\(f_{30}([2,1,3],[3,2,1])=0\),\(f_{0}([1,3,2],[1,3,2])=0\)。
求出当\(P_1,P_2\)取遍所有\(1\sim n\)的全排列时,\(F(P_1,P_2)\)的和。
题解:分开考虑每一个\([l\cdots r]\)的贡献,瞎推式子瞎计算,得到答案:\(\sum_{i=1}^{n}(n-i+1)f(i,E)(\frac{n!}{i!})^2\),\(f(i,j)\)表示长度为\(i\),逆序对数不超过\(j\)的全排列数量。
\(f(i,j)\)可以\(O(n^3)\)预处理DP。这题就做完了。
#include<cstdio>
#define Mod 1000000007
int n,E;
int f[][];
int fra[],inv[];
inline int Min(int x,int y){return x<y?x:y;}
inline int Mo(int x){return x>=Mod?x-Mod:(x<-Mod?x+(Mod<<):(x<?x+Mod:x));}
void init(){
f[][]=;
for(int i=,s,t;i<=;++i){
f[i][]=; s=i*(i-)/; t=(i-)*(i-)/;
for(int j=;j<=s;++j)
f[i][j]=Mo(f[i][j-]+(j<=t?f[i-][j]:f[i-][t])-(j>=i?f[i-][j-i]:));
}
fra[]=inv[]=;
for(int i=;i<=;++i) fra[i]=1ll*fra[i-]*i%Mod;
for(int i=;i<=;++i) fra[i]=1ll*fra[i]*fra[i]%Mod;
for(int i=;i<=;++i) inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
for(int i=;i<=;++i) inv[i]=1ll*inv[i-]*inv[i]%Mod;
for(int i=;i<=;++i) inv[i]=1ll*inv[i]*inv[i]%Mod;
}
int main(){
freopen("perm.in","r",stdin);
freopen("perm.out","w",stdout);
init();
int T; scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&E);
long long ans=;
for(int i=;i<=n;++i)
ans=Mo(ans+1ll*(n-i+)*inv[i]%Mod*f[i][Min(E,i*(i-)/)]%Mod);
ans=1ll*ans*fra[n]%Mod;
printf("%d\n",ans);
}
return ;
}
【FCS NOI2018】福建省冬摸鱼笔记 day2的更多相关文章
- 【FCS NOI2018】福建省冬摸鱼笔记 day1
省冬的第一天. 带了本子,笔,一本<算法导论>就去了.惊讶于为什么同学不带本子记笔记. 他们说:“都学过了.”,果然这才是巨神吧. 第一天:数论,讲师:zzx 前几页的课件挺水,瞎记了点笔 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day6【FJOI 2018】福建省选混分滚蛋记 day1
记录一下day6发生的事情吧. 7:30 到达附中求索碑,被人膜,掉RP. 7:50 进考场,6楼的最后一排的最左边的位置,世界上最角落的地方,没有任何想法. 发现电脑时间和别人不一样,赶快调了一下. ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day3
第三天. 计算几何,讲师:叶芃(péng). dalao们日常不记笔记.@ghostfly233说他都知道了,就盼着自适应辛普森积分. 我计算几何基础不好……然而还是没怎么讲实现,感觉没听什么东西进去 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day5
第五天,也是讲课的最后一天. 数据结构专题,讲师:杨志灿 他的blog我似乎找不到了……以前肯定是在百度博客里面.但是现在百度博客消失了. PPT做的很有感觉,说了很多实用的技巧. 我觉得其实是收获最 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day4
第四天. 动态规划专题,讲师:闫神 讲了一些DP优化技巧,然而思想难度好大啊……根本没想到能优化那地步,连DP方程都没有呢. 不过有几题我还是想明白了. 讲了单调队列,决策单调性,四边形不等式,斜率优 ...
- Hash 日常摸鱼笔记
本篇文章是Hash在信息学竞赛中的应用的学习笔记,分多次更新(已经有很多坑了) 一维递推 首先是Rabin-Karp,对于一个长度为\(m\)的串\(S\) \(f(S)=\sum_{i=1}^{m} ...
- 可持久化Treap 赛前摸鱼笔记
1.基本结构 随机化工具 unsigned int SEED = 19260817; //+1s inline int Rand(){ SEED=SEED*1103515245+12345; retu ...
- [摸鱼]cdq分治 && 学习笔记
待我玩会游戏整理下思绪(分明是想摸鱼 cdq分治是一种用于降维和处理对不同子区间有贡献的离线分治算法 对于常见的操作查询题目而言,时间总是有序的,而cdq分治则是耗费\(O(logq)\)的代价使动态 ...
- HNOI2018 摸鱼记
HNOI2018 摸鱼记 今天我又来记流水账啦 Day 0 颓废的一天. 我,球爷和杜教在颓膜膜.io ych看起来在搓碧蓝 鬼知道哥达鸭干了什么 学习氛围只局限在机房的一角 后来全体Oier开会,5 ...
随机推荐
- UVA10917_Walk Through the Forest
无向图.对于两个相连的点,如果A到终点的最短路径大于B到终点的最短路径,那么A可以往B走,求最终从起点到终点有多少种走法? 首先我们可以直接预处理所有点到终点的最短路径.然后分别判断所有的边两点是否满 ...
- 【uoj#142】【UER #5】万圣节的南瓜灯 乱搞+并查集
题目描述 给出一张 $n\times m$ 的网格图,两个格子之间有一条双向边,当且仅当它们相邻,即在网格图中有一条公共边. 特殊地,对于 $1\le x\le n$ ,$(x,1)$ 和 $(x ...
- BZOJ5288 HNOI/AHOI2018游戏
首先将之间没有锁的房间合并.显然可达性具有传递性和反交换律(即若a能到达b,则b不能到达a). 考虑对每个房间找到其左右第一个(即与其最接近的)能作为起点到达它的房间.如果能求出这个,对此建两棵树,问 ...
- 使用refind引导多系统
使用refind引导多系统 官网下载 rEFInd : http://www.rodsbooks.com/refind/getting.html 安装 rEFInd 教程: http://www.ro ...
- 【BZOJ4205】卡牌配对
Description 现在有一种卡牌游戏,每张卡牌上有三个属性值:A,B,C.把卡牌分为X,Y两类,分别有n1,n2张. 两张卡牌能够配对,当且仅当,存在至多一项属性值使得两张卡牌该项属性值互质,且 ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- 解题:POI 2006 PRO-Professor Szu
题面 这个题是比较套路的做法啦,建反图后缩点+拓扑排序嘛,对于所有处在$size>=2$的SCC中的点都是无限解(可以一直绕) 然后注意统计的时候的小细节,因为无限解/大解也要输出,所以我们把这 ...
- ubuntu 安装python3.6.6
http://www.cnblogs.com/yhongji/p/9383857.html https://www.jianshu.com/p/1565f38f4236 ./configure --w ...
- Linux可执行文件后缀问题
一般来说,可执行文件没有扩展名. Linux不根据扩展名判断文件类型,而是根据文件的内容来判断.所以扩展名的作用是帮助人来识别文件,对于Linux系统本身来说没有什么用处. .sh结尾表示是shell ...
- Nginx反向代理websocket配置实例(官网)
https://www.nginx.com/blog/websocket-nginx/ Blog Tech Rick Nelson of NGINX, Inc. May 16, 2014 NG ...