题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6069

题意: 给出 l, r, k.求:(lambda d(i^k))mod998244353,其中 l <= i <= r, d(i) 为 i 的因子个数.

思路:若 x 分解成质因子乘积的形式为 x = p1^a1 * p2^a2 * ... * pn^an,那么 d(x) = (a1 + 1) * (a2 + 1) * ... * (an + 1) .显然 d(x^k) = (a1 * k + 1) * (a2 * k + 1) * ... * (an * k + 1) .

但如果仅仅以此暴力求解的话是会 tle 的, 需要用下区间素数筛法并且在筛选区间内合数时将其质因分解,将 i 对答案的贡献存储到 sum 数组中,然后再遍历一次统计素数对答案的贡献并将所有贡献累加起来即可.

代码:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define ll long long
using namespace std; const int MAXN = 1e6 + ;
const int mode = ;
int prime[MAXN], tag[MAXN], tot;
ll sum[MAXN], gel[MAXN]; void get_prime(void){
for(int i = ; i < MAXN; i++){
if(!tag[i]){
prime[tot++] = i;
for(int j = ; j * i < MAXN; j++){
tag[j * i] = ;
}
}
}
} ll Max(ll a, ll b){
return a > b ? a : b;
} int main(void){
get_prime();
ll l, r;
int k, t;
scanf("%d", &t);
while(t--){
scanf("%lld%lld%d", &l, &r, &k);
for(int i = ; i <= r - l; i++){
sum[i] = ; //sum[i]记录i+l对答案的贡献
gel[i] = i + l; //将所有元素放到a数组里
}
for(int i = ; i < tot; i++){
ll a = (l + prime[i] - ) / prime[i] * prime[i];
for(ll j = a; j <= r; j += prime[i]){ // 筛[l, r]内的合数
ll cnt = ;
while(gel[j - l] % prime[i] == ){
cnt++;
gel[j - l] /= prime[i];
}
sum[j - l] = sum[j - l] * (cnt * k + % mode);
if(sum[j - l] >= mode) sum[j - l] %= mode;
}
}
ll sol = ;
for(int i = ; i <= r - l; i++){
if(gel[i] != ) sum[i] = sum[i] * (k + );
sol += sum[i];
if(sol >= mode) sol %= mode;
}
printf("%lld\n", sol);
}
return ;
}
(∑i=lrd(ik))mod998244353
(∑i=lrd(ik))mod998244353
(∑i=lrd(ik))mod998244353

hdu6069(简单数学+区间素数筛法)的更多相关文章

  1. HDU 6069 Counting Divisors(区间素数筛法)

    题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K ...

  2. POJ-2689 Prime Distance,区间素数筛法

                                                    Prime Distance 只会埃氏筛法的弱鸡今天读了读挑战程序设计120页,明白了求小区间内素数的方 ...

  3. M - Help Hanzo LightOJ - 1197 (大区间素数筛法)

    题解:素数区间问题.注意到a和b的范围是1<<31,所以直接暴力打表肯定不可以.如果一个数是合数,他的两个因子要么是两个sqrt(x),要么就分布在sqrt(x)两端,所以我们可以根据sq ...

  4. [原]素数筛法【Sieve Of Eratosthenes + Sieve Of Euler】

    拖了有段时间,今天来总结下两个常用的素数筛法: 1.sieve of Eratosthenes[埃氏筛法] 这是最简单朴素的素数筛法了,根据wikipedia,时间复杂度为 ,空间复杂度为O(n). ...

  5. 数学#素数筛法 HDU 4548&POJ 2689

    找素数本来是很简单的问题,但当数据变大时,用朴素思想来找素数想必是会超时的,所以用素数筛法. 素数筛法 打表伪代码(用prime数组保存区间内的所有素数): void isPrime() vis[]数 ...

  6. hdu6069[素数筛法] 2017多校4

    对于[l , r]内的每个数,根据唯一分解定理有   所以有  因为     //可根据唯一分解定理推导 所以      题目要求 就可以运用它到上述公式 (注意不能暴力对l,r内的数一个个分解算贡献 ...

  7. poj 2689Prime Distance(区间素数)埃氏筛法

    这道题的L和R都很大,所以如果直接开一个1~R的数组明显会超时.但是R-L并不大,所以我们考虑把这个区间(L--R)移动到(1--(R-L+1))这个区间再开数组(就是把每个数减L再加1).接下来先用 ...

  8. HDOJ 6069 素数筛法(数学)

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  9. Goldbach`s Conjecture(LightOJ - 1259)【简单数论】【筛法】

    Goldbach`s Conjecture(LightOJ - 1259)[简单数论][筛法] 标签: 入门讲座题解 数论 题目描述 Goldbach's conjecture is one of t ...

随机推荐

  1. UTF-8 delphi 函数

    unit util_utf8;    interface    uses Windows;    type   UTF8String = AnsiString;      function AnsiT ...

  2. Python基础之字符串操作

    字符串的常用操作包括但不限于以下操作: 字符串的替换.删除.截取.复制.连接.比较.查找.分割等 这里将对字符串的内置操作方法进行总结归纳,重点是以示例的方式进行展示. 使用type获取创建对象的类 ...

  3. node nvm

    nvm 是 Mac 下的 node 管理工具,有点类似管理 Ruby 的 rvm,如果是需要管理 Windows 下的 node,官方推荐是使用 nvmw 或 nvm-windows . 以下具体说下 ...

  4. Python基础-处理时间模块

    import datetime, time # print(time.time()) # 获取当前时间戳,从unix元年开始到现在过了多少秒# print(time.sleep(19)) # 休息几s ...

  5. 关于MFC中重载函数是否调用基类相对应函数的问题

    在重载CDialog的OnInitDialog()函数的时候,在首行会添加一句:CDialongEx::OnInitDialog();语句,这是为什么呢?什么时候添加,什么时候不添加? 实际上,我们在 ...

  6. NodeJS中 Path 模块

    var path = require('path'); // 当发现有多个连续的斜杠时,会替换成一个: 当路径末尾包含斜杠时,会保留: // 在 Windows 系统会使用反斜杠. var p = p ...

  7. RTP 打包H264与AAC

    static int h264_parse(Track *tr, uint8_t *data, size_t len) { h264_priv *priv = tr->private_data; ...

  8. 桥接以及Mercury MW54R中继

    家里连个路由器,一个是比较先进的TP-Link的TL-WR842N(100M),另外一个是比较古老的水星(Mercury) MW54R(54M),我们知道新的路由器都有WDS功能,方便作为副路由器(中 ...

  9. 修改initrd.img里ko文件的一个小tips

    在经历以下步骤解开initrd.img文件之后: 若file initrd.img 指示initrd.img为gzip文件,则2: mv initrd.img initrd.gz gunzip -d ...

  10. Mybatis+Mysql 返回主键的值

    需求:使用MyBatis往MySQL数据库中插入一条记录后,需要返回该条记录的自增主键值. 方法:在mapper中指定keyProperty属性,示例如下: <insert id="i ...