hdu2767之强联通缩点
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2768 Accepted Submission(s): 1038
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove?
Can you help me determine this?
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
2
4 0
3 2
1 2
1 3
4
2
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=20000+10;
int n,m,size,top,index,ind,oud;
int head[MAX],dfn[MAX],low[MAX],stack[MAX];
int mark[MAX],flag[MAX];
//dfn表示点u出现的时间,low表示点u能到达所属环中最早出现的点(记录的是到达的时间) struct Edge{
int v,next;
Edge(){}
Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[50000+10]; void Init(int num){
for(int i=0;i<=num;++i)head[i]=-1;
size=top=index=ind=oud=0;
} void InsertEdge(int u,int v){
edge[size]=Edge(v,head[u]);
head[u]=size++;
} void tarjan(int u){
if(mark[u])return;
dfn[u]=low[u]=++index;
stack[++top]=u;
mark[u]=1;
for(int i=head[u];i != -1;i=edge[i].next){
int v=edge[i].v;
tarjan(v);
if(mark[v] == 1)low[u]=min(low[u],low[v]);//必须点v在栈里面才行
}
if(dfn[u] == low[u]){
++ind,++oud;//计算缩点后点的个数,方便计算入度和出度
while(stack[top] != u){
mark[stack[top]]=-1;
low[stack[top--]]=low[u];
}
mark[u]=-1;
--top;
}
} int main(){
int t,u,v;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
Init(n);
for(int i=0;i<m;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v);
}
memset(mark,0,sizeof mark);
for(int i=1;i<=n;++i){
if(mark[i])continue;
tarjan(i);//tarjan用来缩点
}
if(ind == 1){cout<<0<<endl;continue;}
for(int i=0;i<=n;++i)mark[i]=flag[i]=0;
for(int i=1;i<=n;++i){
for(int j=head[i];j != -1;j=edge[j].next){
v=edge[j].v;
if(low[i] == low[v])continue;
if(mark[low[i]] == 0)--oud;//mark标记点u是否有出度
if(flag[low[v]] == 0)--ind;//flag标记点u是否有入度
mark[low[i]]=1,flag[low[v]]=1;
}
}
printf("%d\n",max(oud,ind));
}
return 0;
}
hdu2767之强联通缩点的更多相关文章
- poj 3694双联通缩点+LCA
题意:给你一个无向连通图,每次加一条边后,问图中桥的数目. 思路:先将图进行双联通缩点,则缩点后图的边就是桥,然后dfs记录节点深度,给出(u,v)使其节点深度先降到同一等级,然后同时降等级直到汇合到 ...
- hdu 4612 双联通缩点+树形dp
#pragma comment(linker,"/STACK:102400000,102400000")//总是爆栈加上这个就么么哒了 #include<stdio.h> ...
- HDU 2767-Proving Equivalences(强联通+缩点)
题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...
- Intelligence System (hdu 3072 强联通缩点+贪心)
Intelligence System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 边的双联通+缩点+LCA(HDU3686)
Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- POJ 2186 Popular Cows(强联通+缩点)
Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...
- Proving Equivalences (hdu 2767 强联通缩点)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...
- POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)
[题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...
随机推荐
- csu1811(树上启发式合并)
csu1811 题意 给定一棵树,每个节点有颜色,每次仅删掉第 \(i\) 条边 \((a_i, b_i)\) ,得到两颗树,问两颗树节点的颜色集合的交集. 分析 转化一下,即所求答案为每次删掉 \( ...
- 物理像素,ppi,逻辑分辨率和物理分辨率
1 明确几个概念: 物理像素:屏幕物理像素 屏幕像素密度ppi:pixels per inch,屏幕上每英寸可以显示的像素点的数量,即屏幕像素密度.顺便一提,ppi就是dpi,只不过有文章里说苹果喜欢 ...
- H-Index II -- LeetCode
Given an array of citations (each citation is a non-negative integer) of a researcher, write a funct ...
- ResourceBundle (读取properties文件及中文乱码解决方法)
原文:http://blog.csdn.net/joecheungdishuiya/article/details/6304993 public class test { static Resourc ...
- mysql优化30条建议
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- 本地启动tomcat的时候报内存溢出错误:java.util.concurrent.ExecutionException: java.lang.OutOfMemoryError: PermGen space
问题分析: PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,这块内存主要是被JVM存放Class和Meta信息的,Class在被Load ...
- MIT算法导论笔记
详细MIT算法导论笔记 (网络链接) 第一讲:课程简介及算法分析 (Sheridan) 第二讲:渐近符号.递归及解法 (Sheridan) 第三讲:分治法(1)(Sheridan) 第四讲:快排及随 ...
- A read-only user or a user in a read-only database is not permitted to disable
A read-only user or a user in a read-only database is not permitted to disable 出现如题的问题通常是由于db.lck的所属 ...
- windows新建或者重命名文件及目录必须手动刷新才干显示出来问题解决方法
首先推断注冊表中HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Update\UpdateMode值是否为0,该值若为1表示手工刷新, 该 ...
- Pro Tools安装图文教程
Pro Tools安装图文教程 Avid Pro Tools是Digidesign公司出品的一款音质最佳.音频制作强大的软件,能够在Mac或PC上为影片编曲.录制.编辑和混制高品质音乐或声音,生成 ...