等和的分隔子集(DP)
晓萌希望将1到N的连续整数组成的集合划分成两个子集合,且保证每个集合的数字和是相等。例如,对于N=3,对应的集合{1,2,3}能被划分成{3} 和 {1,2}两个子集合.
这两个子集合中元素分别的和是相等的。
对于N=3,我们只有一种划分方法,而对于N=7时,我们将有4种划分的方案。
输入包括一行,仅一个整数,表示N的值(1≤N≤39)。
输出包括一行,仅一个整数,晓萌可以划分对应N的集合的方案的个数。当没发划分时,输出0。
样例输入
7
样例输出
4
AC代码
#include<iostream> using namespace std; long long DP[][]; int main()
{
int n;
cin >> n;
int s = (+n)*n/; if(s% == )
{
cout << ;
return ;
} int ss = s / ; DP[][] = ; for(int i = ; i <= ss; i++)
{
DP[][i] = ;
} for(int i = ; i <= n; i++)
{
for(int h = ; h <= ss; h++)
{
if(h < i)
DP[i][h] = DP[i-][h];
else
{
DP[i][h] = DP[i-][h] + DP[i-][h-i];
}
}
} cout << DP[n][ss]/ << endl; return ;
}
等和的分隔子集(DP)的更多相关文章
- [BZOJ4416][SHOI2013]阶乘字符串(子集DP)
怎么也没想到是子集DP,想到了应该就没什么难度了. 首先n>21时必定为NO. g[i][j]表示位置i后的第一个字母j在哪个位置,n*21求出. f[S]表示S的所有全排列子序列出现的最后末尾 ...
- loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...
- hdu 5823 color II —— 子集DP
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5823 看博客:http://www.cnblogs.com/SilverNebula/p/5929550. ...
- BZOJ 4006 [JLOI2015]管道连接(斯坦纳树+子集DP)
明显是一道斯坦纳树的题. 然而这题只需要属性相同的点互相连接. 我们还是照常先套路求出\(ans[s]\). 然后对\(ans[s]\)做子集DP即可. 具体看代码. #include<iost ...
- BZOJ 2560(子集DP+容斥原理)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 757 Solved: 497[Submit][Status][Discuss] ...
- 动态规划---等和的分隔子集(计蒜课)、从一个小白的角度剖析DP问题
自己还是太菜了,算法还是很难...这么简单的题目竟然花费了我很多时间...在这里我用一个小白的角度剖析一下这道题目. 晓萌希望将1到N的连续整数组成的集合划分成两个子集合,且保证每个集合的数字和是相等 ...
- 等和的分隔子集(dp)
晓萌希望将 1 到 N 的连续整数组成的集合划分成两个子集合,且保证每个集合的数字和是相等. 例如,对于 N = 3,对应的集合 1, 2, 3 能被划分成3和1,2两个子集合. 这两个子集合中元素分 ...
- bzoj2560串珠子(子集dp)
铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci, ...
- 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)
洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...
随机推荐
- Asp.net工作流workflow实战之工作流启动与继续(三)
工作流帮助类: //让工作流继续沿着书签的位置向下执行value是向书签传递参数 wfc.ResumeBookmark(bookmarkName,value); //把传过来的数据value作为输出参 ...
- python-snappy的安装小记
在弄个dota2的replay parser玩玩,在github上找到了几个,都是基于V社的demoinfo2(https://developer.valvesoftware.com/wiki/Dot ...
- GWT异步更改cellTable中cell的数据显示
项目中遇到一个棘手的问题,使用GWT的cellTable的时候,要更改一个单元格的显示问题.如果仅仅是一个单独的cell 可能会有比较好的处理办法,比如可以找到这一列,然后更新整个cellTable, ...
- Ueditor/自定义配置
UEditor除 了具有轻量.可定制等优点外,还始终将优化编辑操作.提升用户体验摆在了很重要的位置.在这一点上,除了对编辑器功能.性能.实现细节等不断地改进和追求 创新之外,众多灵活而人性化的自定义配 ...
- 有关Backgroundworker
(一)Backgroundworker取消时应该用的有关代码: CancelAsync方法是在前台主线程用的,CancellationPending属性是在后台子线程用的.实际的使用方式应该是这样的: ...
- x264的一些参数设置对编码效率的影响
i_luma_deadzone[0]和i_luma_deadzone[1]分别对应inter和intra, 取值范围1~32,测试可以得知,这连个参数的调整可以对数据量有很大影响,值越大数据量相应越少 ...
- Eclipse中,将tab缩进改为4个空格
用4个空格来缩进 , 不要用Tab来缩进 , 因为Tab在不同平台的点位不一样 eclipse->preferences->General->Editors->Text Edi ...
- JAVA基础知识总结14(String、StringBuffer、StringBuilder)
1.String字符串: java中用String类进行描述.对字符串进行了对象的封装.这样的好处是可以对字符串这种常见数据进行方便的操作.对象封装后,可以定义N多属性和行为. 如何定义字符串对象呢? ...
- 数据库理论-范式(1NF、2NF、3NF)
范式是“符合某一种级别的关系模式的集合,表示一个关系内部各属性之间的联系的合理化程度”. 第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项.(每个属性不可分割)第二范式(2NF)要求数据 ...
- android 中context的具体作用和意义
context在android中是非常重要的一个类,此类一般用于activity之中 从字面意思来看,这是环境变量,内部实现了一些方法,但是此类也可以看做是一个句柄,用来唯一标示activity 举个 ...