1.RSA是不对称加密算法,它的公钥可能会被多人持有(公钥公钥,公开的密钥),而私钥只有一人拥有,例如支付宝开放平台,私钥只有支付宝公司持有,而公钥则是所有接入它API的公司都能得到。对于公钥加密的信息,只有私钥才能解密,从而实现了数据可以的保密的到达拥有私钥的一方。即使被第三方截取,也无法解密。

2.因为私钥本身长度更长,对于破解难度更大。

3.而私钥加密,公钥解密一般被用于数字签名。数字签名是用于防篡改和防止假冒的,因为只有一人拥有私钥。甲方通过私钥对数据进行签名,乙方通过甲方的公钥验证签名,如果成功,说明确实是甲方发来的,并且数据没有被修改。一旦相反,公钥是公开的,大家都能做签名,就没意义了。

总结:公钥加密|私钥解密用于防止密文被破解、被第三方得到明文;私钥加密|公钥解密用于防止明文被篡改,确保消息的完整性和正确的发送方。那么既然为了防止明文被篡改,我们是不是直接都可以用公钥加密的方式呢,这样整串都是密文了,其实当然也可以,只不过签名的效率要高的多,而非对称加解密很费时间,所有对于不值得加密的非关键性数据,还是用签名合适。

RSA等非对称加密为什么要用公钥加密,而用私钥解密?的更多相关文章

  1. OpenSSL RSA加解密 (.Net公钥加密/ Linux端私钥解密)

    要求在.Net端生成公钥私钥对. 然后在.Net端使用RSA公钥加密:在Linux端使用RSA私钥解密. 最初的尝试是:.Net端使用RSACryptoServiceProvider; linux端使 ...

  2. php---进行RSA进行非对称加密

    参考文档: https://blog.csdn.net/zhihua_w/article/details/74002212 http://www.bm8.com.cn/webtool/rsa/http ...

  3. php RSA非对称加密 的实现

    基本概念 加密的意义 加密的意义在于数据的传输过程中,即使被第三方获取到传输的数据,第三方也不能获取到数据的具体含义. 加密方式分为对称加密和非对称加密 什么是对称加密? 对称加密只使用一个秘钥,加密 ...

  4. 使用 RSA 非对称加密保证数据不被篡改 java 例子代码

    原理: 对原始数据 生成有序的json 字符串,然后取 摘要,然后 对摘要 进项 分对称加密.( 不对原数据加密是应为 原数据太大,加解密速度太慢,非对称加密都不 挺慢的.在摘要函数具有雪崩效应 ,原 ...

  5. Java对称与非对称加密解密,AES与RSA

    加密技术可以分为对称与非对称两种. 对称加密,解密,即加密与解密用的是同一把秘钥,常用的对称加密技术有DES,AES等 而非对称技术,加密与解密用的是不同的秘钥,常用的非对称加密技术有RSA等 为什么 ...

  6. [Linux] 使用openssl实现RSA非对称加密

    简单定义:公钥和私钥,加密和解密使用的是两个不同的密钥,所以是非对称 系统:ubuntu 14.04 软件:openssl java php 生成公钥私钥 使用命令生成私钥: openssl genr ...

  7. RSA 加密算法 Java 公钥加密私钥解密 和 私钥加密公钥解密 的特点

    package com.smt.cipher.unsymmetry; import org.apache.commons.codec.binary.Base64; import org.apache. ...

  8. Java加密与解密笔记(三) 非对称加密

    非对称的特点是加密和解密时使用的是不同的钥匙.密钥分为公钥和私钥,用公钥加密的数据只能用私钥进行解密,反之亦然. 另外,密钥还可以用于数字签名.数字签名跟上文说的消息摘要是一个道理,通过一定方法对数据 ...

  9. 非对称加密和linux上的 ssh-keygen 工具使用

    rsa :创造非对称加密的三个人名.原理是两个1024到2048之间的素数,以此为乘积.等... a*b=c  一般a*b为私钥端,c为公钥端.因为 c非常难算出a和b. ssh-keygen -t ...

随机推荐

  1. 【ACM】最少乘法次数 - 树

    最少乘法次数 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 给你一个非零整数,让你求这个数的n次方,每次相乘的结果可以在后面使用,求至少需要多少次乘.如24:2*2 ...

  2. web.xml中监听器如何顺序加载

    最近用到在Tomcat服务器启动时自动加载数据到缓存,这就需要创建一个自定义的缓存监听器并实现ServletContextListener接口, 并且在此自定义监听器中需要用到Spring的依赖注入功 ...

  3. OpenStack local.conf

    # Sample ``local.conf`` for user-configurable variables in ``stack.sh`` # NOTE: Copy this file to th ...

  4. SQL2008无法启动,报错"17051"解决方法

    SQL2008无法启动,这是错误日志: C:/Program Files/Microsoft SQL Server/MSSQL10_50.MSSQLSERVER/MSSQL/Log 2011-06-0 ...

  5. rabbit的简单搭建,java使用rabbitmq queue的简单例子和一些坑

    一 整合 由于本人的码云太多太乱了,于是决定一个一个的整合到一个springboot项目里面. 附上自己的项目地址https://github.com/247292980/spring-boot 以整 ...

  6. Day1下午

    T1 暴力50分 排A和B X,不用考虑X    用数组80分, 权值线段树.平衡树100, 一个函数? T2 打表  dp logn+1,+ 搜索,dp? txt..... T3 30分暴力和尽量均 ...

  7. .net 中的托管与非托管

    托管代码 托管代码就是Visual Basic .NET和C#编译器编译出来的代码.编译器把代码编译成中间语言(IL),而不是能直接在你的电脑上运行的机器码.中间语言被封装在一个叫程序集(assemb ...

  8. xml 文件转化Dictionary

    下面是xml文件 <?xml version="1.0" encoding="utf-8" ?><nodes> <国土局> ...

  9. Jquery ajax 与 lazyload的混合使用(实现图片异步加载)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  10. CF1136D Nastya Is Buying Lunch

    思路: 1. 最终答案不超过能与Nastya“直接交换”的人数. 2. 对于排在j前面的i,如果i和i-j之间(包括j)的每个人都能“直接交换”,j才能前进一步. 实现: #include <b ...