当前最好的实例分割网络非PANet莫属,可是由于模型太新,网上的资料太少,最近的项目需要 实例分割,只能自己踩踩坑了,目前我还没看到一篇关于PANet训练的博客,只有几篇讲论文的。

环境:ubuntu16.04    anaconda3  pytorch0.4.0

将代码down下来后,我在anaconda中新开了一个环境,用的是python3.6,如果用python2的话,在lib文件夹下的make.sh中的python3需要修改一下

然后一开始的时候我没有进行make,直接进行测试,运行

python tools/test_net.py --dataset coco2017 --cfg configs/panet/e2e_panet_R-50-FPN_2x_mask.yaml --load_ckpt {path/to/your/checkpoint}

然后,报错如下

Traceback (most recent call last):
File "tools/test_net.py", line 14, in <module>
from core.test_engine import run_inference
File "/home/wzy/Documents/PANet-master/lib/core/test_engine.py", line 39, in <module>
from modeling import model_builder
File "/home/wzy/Documents/PANet-master/lib/modeling/model_builder.py", line 11, in <module>
from model.roi_pooling.functions.roi_pool import RoIPoolFunction
File "/home/wzy/Documents/PANet-master/lib/model/roi_pooling/functions/roi_pool.py", line 3, in <module>
from .._ext import roi_pooling
File "/home/wzy/Documents/PANet-master/lib/model/roi_pooling/_ext/roi_pooling/__init__.py", line 3, in <module>
from ._roi_pooling import lib as _lib, ffi as _ffi
ImportError: /home/wzy/Documents/PANet-master/lib/model/roi_pooling/_ext/roi_pooling/_roi_pooling.so: undefined symbol: __cudaPopCallConfiguration

还是需要make一下的,结果这个环节更让人头大,一直报错

running build_ext
building 'utils.cython_bbox' extension
creating build
creating build/temp.linux-x86_64-3.6
creating build/temp.linux-x86_64-3.6/utils
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/numpy/core/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c utils/cython_bbox.c -o build/temp.linux-x86_64-3.6/utils/cython_bbox.o -Wno-cpp
creating build/lib.linux-x86_64-3.6
creating build/lib.linux-x86_64-3.6/utils
gcc -pthread -shared -L/home/ustc/anaconda3/envs/py36/lib -Wl,-rpath=/home/ustc/anaconda3/envs/py36/lib,--no-as-needed -std=c99 build/temp.linux-x86_64-3.6/utils/cython_bbox.o -L/home/ustc/anaconda3/envs/py36/lib -lpython3.6m -o build/lib.linux-x86_64-3.6/utils/cython_bbox.cpython-36m-x86_64-linux-gnu.so
building 'utils.cython_nms' extension
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/numpy/core/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c utils/cython_nms.c -o build/temp.linux-x86_64-3.6/utils/cython_nms.o -Wno-cpp
gcc -pthread -shared -L/home/ustc/anaconda3/envs/py36/lib -Wl,-rpath=/home/ustc/anaconda3/envs/py36/lib,--no-as-needed -std=c99 build/temp.linux-x86_64-3.6/utils/cython_nms.o -L/home/ustc/anaconda3/envs/py36/lib -lpython3.6m -o build/lib.linux-x86_64-3.6/utils/cython_nms.cpython-36m-x86_64-linux-gnu.so
copying build/lib.linux-x86_64-3.6/utils/cython_bbox.cpython-36m-x86_64-linux-gnu.so -> utils
copying build/lib.linux-x86_64-3.6/utils/cython_nms.cpython-36m-x86_64-linux-gnu.so -> utils
Compiling nms kernels by nvcc...
Including CUDA code.
/home/ustc/文档/PANet-master/lib/model/nms
['/home/ustc/文档/PANet-master/lib/model/nms/src/nms_cuda_kernel.cu.o']
generating /tmp/tmpwpj4u4zb/_nms.c
running build_ext
building '_nms' extension
creating home
creating home/ustc
creating home/ustc/文档
creating home/ustc/文档/PANet-master
creating home/ustc/文档/PANet-master/lib
creating home/ustc/文档/PANet-master/lib/model
creating home/ustc/文档/PANet-master/lib/model/nms
creating home/ustc/文档/PANet-master/lib/model/nms/src
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c _nms.c -o ./_nms.o -std=c99
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c /home/ustc/文档/PANet-master/lib/model/nms/src/nms_cuda.c -o ./home/ustc/文档/PANet-master/lib/model/nms/src/nms_cuda.o -std=c99
/home/ustc/文档/PANet-master/lib/model/nms/src/nms_cuda.c: In function ‘nms_cuda’:
/home/ustc/文档/PANet-master/lib/model/nms/src/nms_cuda.c:14:22: error: dereferencing pointer to incomplete type ‘THTensor {aka struct THTensor}’
boxes_host->size[0],
^
Traceback (most recent call last):
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/unixccompiler.py", line 118, in _compile
extra_postargs)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/ccompiler.py", line 909, in spawn
spawn(cmd, dry_run=self.dry_run)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/spawn.py", line 36, in spawn
_spawn_posix(cmd, search_path, dry_run=dry_run)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/spawn.py", line 159, in _spawn_posix
% (cmd, exit_status))
distutils.errors.DistutilsExecError: command 'gcc' failed with exit status 1 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/ffiplatform.py", line 49, in _build
dist.run_command('build_ext')
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/dist.py", line 974, in run_command
cmd_obj.run()
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/command/build_ext.py", line 339, in run
self.build_extensions()
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/command/build_ext.py", line 448, in build_extensions
self._build_extensions_serial()
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/command/build_ext.py", line 473, in _build_extensions_serial
self.build_extension(ext)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/command/build_ext.py", line 533, in build_extension
depends=ext.depends)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/ccompiler.py", line 574, in compile
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/unixccompiler.py", line 120, in _compile
raise CompileError(msg)
distutils.errors.CompileError: command 'gcc' failed with exit status 1 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "build.py", line 37, in <module>
ffi.build()
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/__init__.py", line 189, in build
_build_extension(ffi, cffi_wrapper_name, target_dir, verbose)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/__init__.py", line 111, in _build_extension
outfile = ffi.compile(tmpdir=tmpdir, verbose=verbose, target=libname)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/api.py", line 684, in compile
compiler_verbose=verbose, debug=debug, **kwds)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/recompiler.py", line 1484, in recompile
compiler_verbose, debug)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/ffiplatform.py", line 20, in compile
outputfilename = _build(tmpdir, ext, compiler_verbose, debug)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/ffiplatform.py", line 56, in _build
raise VerificationError('%s: %s' % (e.__class__.__name__, e))
cffi.error.VerificationError: CompileError: command 'gcc' failed with exit status 1
Compiling roi pooling kernels by nvcc...
Including CUDA code.
/home/ustc/文档/PANet-master/lib/model/roi_pooling
generating /tmp/tmpy7_eurcc/_roi_pooling.c
running build_ext
building '_roi_pooling' extension
creating home
creating home/ustc
creating home/ustc/文档
creating home/ustc/文档/PANet-master
creating home/ustc/文档/PANet-master/lib
creating home/ustc/文档/PANet-master/lib/model
creating home/ustc/文档/PANet-master/lib/model/roi_pooling
creating home/ustc/文档/PANet-master/lib/model/roi_pooling/src
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c _roi_pooling.c -o ./_roi_pooling.o -std=c99
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c /home/ustc/文档/PANet-master/lib/model/roi_pooling/src/roi_pooling.c -o ./home/ustc/文档/PANet-master/lib/model/roi_pooling/src/roi_pooling.o -std=c99
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c /home/ustc/文档/PANet-master/lib/model/roi_pooling/src/roi_pooling_cuda.c -o ./home/ustc/文档/PANet-master/lib/model/roi_pooling/src/roi_pooling_cuda.o -std=c99
gcc -pthread -shared -L/home/ustc/anaconda3/envs/py36/lib -Wl,-rpath=/home/ustc/anaconda3/envs/py36/lib,--no-as-needed -std=c99 ./_roi_pooling.o ./home/ustc/文档/PANet-master/lib/model/roi_pooling/src/roi_pooling.o ./home/ustc/文档/PANet-master/lib/model/roi_pooling/src/roi_pooling_cuda.o /home/ustc/文档/PANet-master/lib/model/roi_pooling/src/roi_pooling.cu.o -L/home/ustc/anaconda3/envs/py36/lib -lpython3.6m -o ./_roi_pooling.so
Compiling roi crop kernels by nvcc...
Including CUDA code.
/home/ustc/文档/PANet-master/lib/model/roi_crop
generating /tmp/tmptm4aw2z1/_roi_crop.c
running build_ext
building '_roi_crop' extension
creating home
creating home/ustc
creating home/ustc/文档
creating home/ustc/文档/PANet-master
creating home/ustc/文档/PANet-master/lib
creating home/ustc/文档/PANet-master/lib/model
creating home/ustc/文档/PANet-master/lib/model/roi_crop
creating home/ustc/文档/PANet-master/lib/model/roi_crop/src
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c _roi_crop.c -o ./_roi_crop.o -std=c99
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c /home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c -o ./home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.o -std=c99
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c: In function ‘BilinearSamplerBHWD_updateOutput’:
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:10:30: error: dereferencing pointer to incomplete type ‘THTensor {aka struct THTensor}’
int batchsize = inputImages->size[0];
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c: In function ‘BilinearSamplerBHWD_updateGradInput’:
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:190:14: warning: unused variable ‘inBottomRight’ [-Wunused-variable]
real inBottomRight=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:189:14: warning: unused variable ‘inBottomLeft’ [-Wunused-variable]
real inBottomLeft=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:188:14: warning: unused variable ‘inTopRight’ [-Wunused-variable]
real inTopRight=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:187:14: warning: unused variable ‘inTopLeft’ [-Wunused-variable]
real inTopLeft=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:186:14: warning: unused variable ‘v’ [-Wunused-variable]
real v=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c: In function ‘BilinearSamplerBCHW_updateGradInput’:
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:441:14: warning: unused variable ‘inBottomRight’ [-Wunused-variable]
real inBottomRight=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:440:14: warning: unused variable ‘inBottomLeft’ [-Wunused-variable]
real inBottomLeft=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:439:14: warning: unused variable ‘inTopRight’ [-Wunused-variable]
real inTopRight=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:438:14: warning: unused variable ‘inTopLeft’ [-Wunused-variable]
real inTopLeft=0;
^
/home/ustc/文档/PANet-master/lib/model/roi_crop/src/roi_crop.c:437:14: warning: unused variable ‘v’ [-Wunused-variable]
real v=0;
^
Traceback (most recent call last):
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/unixccompiler.py", line 118, in _compile
extra_postargs)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/ccompiler.py", line 909, in spawn
spawn(cmd, dry_run=self.dry_run)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/spawn.py", line 36, in spawn
_spawn_posix(cmd, search_path, dry_run=dry_run)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/spawn.py", line 159, in _spawn_posix
% (cmd, exit_status))
distutils.errors.DistutilsExecError: command 'gcc' failed with exit status 1 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/ffiplatform.py", line 49, in _build
dist.run_command('build_ext')
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/dist.py", line 974, in run_command
cmd_obj.run()
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/command/build_ext.py", line 339, in run
self.build_extensions()
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/command/build_ext.py", line 448, in build_extensions
self._build_extensions_serial()
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/command/build_ext.py", line 473, in _build_extensions_serial
self.build_extension(ext)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/command/build_ext.py", line 533, in build_extension
depends=ext.depends)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/ccompiler.py", line 574, in compile
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/distutils/unixccompiler.py", line 120, in _compile
raise CompileError(msg)
distutils.errors.CompileError: command 'gcc' failed with exit status 1 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "build.py", line 36, in <module>
ffi.build()
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/__init__.py", line 189, in build
_build_extension(ffi, cffi_wrapper_name, target_dir, verbose)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/__init__.py", line 111, in _build_extension
outfile = ffi.compile(tmpdir=tmpdir, verbose=verbose, target=libname)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/api.py", line 684, in compile
compiler_verbose=verbose, debug=debug, **kwds)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/recompiler.py", line 1484, in recompile
compiler_verbose, debug)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/ffiplatform.py", line 20, in compile
outputfilename = _build(tmpdir, ext, compiler_verbose, debug)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/cffi/ffiplatform.py", line 56, in _build
raise VerificationError('%s: %s' % (e.__class__.__name__, e))
cffi.error.VerificationError: CompileError: command 'gcc' failed with exit status 1
Compiling roi align kernels by nvcc...
Including CUDA code.
/home/ustc/文档/PANet-master/lib/modeling/roi_xfrom/roi_align
generating /tmp/tmperu9f6wr/_roi_align.c
running build_ext
building '_roi_align' extension
creating home
creating home/ustc
creating home/ustc/文档
creating home/ustc/文档/PANet-master
creating home/ustc/文档/PANet-master/lib
creating home/ustc/文档/PANet-master/lib/modeling
creating home/ustc/文档/PANet-master/lib/modeling/roi_xfrom
creating home/ustc/文档/PANet-master/lib/modeling/roi_xfrom/roi_align
creating home/ustc/文档/PANet-master/lib/modeling/roi_xfrom/roi_align/src
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c _roi_align.c -o ./_roi_align.o -std=c99
gcc -pthread -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -std=c99 -fPIC -DWITH_CUDA -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/TH -I/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/utils/ffi/../../lib/include/THC -I/usr/local/cuda/include -I/home/ustc/anaconda3/envs/py36/include/python3.6m -c /home/ustc/文档/PANet-master/lib/modeling/roi_xfrom/roi_align/src/roi_align_cuda.c -o ./home/ustc/文档/PANet-master/lib/modeling/roi_xfrom/roi_align/src/roi_align_cuda.o -std=c99
gcc -pthread -shared -L/home/ustc/anaconda3/envs/py36/lib -Wl,-rpath=/home/ustc/anaconda3/envs/py36/lib,--no-as-needed -std=c99 ./_roi_align.o ./home/ustc/文档/PANet-master/lib/modeling/roi_xfrom/roi_align/src/roi_align_cuda.o /home/ustc/文档/PANet-master/lib/modeling/roi_xfrom/roi_align/src/roi_align_kernel.cu.o -L/home/ustc/anaconda3/envs/py36/lib -lpython3.6m -o ./_roi_align.so

这里我主要google了一下 cffi.error.VerificationError: CompileError: command 'gcc' failed with exit status 1

我注意到这是一个很多人都遇到过的问题,在faster-rcnn的pytorch实现中也有这个问题,似乎这个代码的实现部分与faster-rcnn的有相同部分,然后我主要采用了两步解决办法,一是在make.sh中添加

export CXXFLAGS="-std=c++11"
export CFLAGS="-std=c99"

第二点就是采用pytorch0.4.0而不是pytorch0.4.1,然后再make,没看到报错,我就假定没问题了。

接下来琢磨如何训练自己的数据,官方代码给的示例是coco2017数据集,这个数据集很大的,几十G,在网上找了一篇博客https://blog.csdn.net/daniaokuye/article/details/78699138#commentsedit,用wget下载,速度尚可。

下载好后解压,几个文件夹如下所示

其中,三个注释压缩文件解压后的默认文件名都是annotations,所以出现了(2)(3),其中train2017中有118287张图片,19G,val2017有5000张图片,800多M,test2017有40670张图片,6.6G。我不太明白的是stuff_annotations里面的注释文件,查了一下好像是用来做背景语义分割的,做实例分割应该用不到,暂且不管它了,在annotations_trainval2017中存放的是我们想要的语义分割注释,当然了,里面还有场景描述和人体关键点检测的注释。如下

然后image_info_test2017里面是测试集的注释,

左边的应该是测试图片的注释,里面images部分的数目与测试集相等,不过其中只有图像的信息,并没有实例的标签,而右边的不知道是干嘛的。

现在我准备运行一下提供的测试代码,不是输入测试集,而是验证集,验证集有注释文件。

python tools/test_net.py --dataset coco2017 --cfg configs/panet/e2e_panet_R-50-FPN_2x_mask.yaml --load_ckpt {path/to/your/checkpoint

这里要测试的是coco2017验证集,在主目录下新建data文件夹,data里面新建coco文件夹,coco里面新建images文件夹和annotations文件夹,images里面放置val2017数据集,annotations里面放置instances_val2017.json文件,这个时候还需要预训练权重,resnet50_caffe.pth,一开始我下载了pytorch的官方实现,resnet50-19c8e357.pth,发现不行的,键值不匹配。报错如下

Traceback (most recent call last):
File "tools/test_net.py", line 112, in <module>
check_expected_results=True)
File "/home/ustc/文档/PANet-master/lib/core/test_engine.py", line 128, in run_inference
all_results = result_getter()
File "/home/ustc/文档/PANet-master/lib/core/test_engine.py", line 108, in result_getter
multi_gpu=multi_gpu_testing
File "/home/ustc/文档/PANet-master/lib/core/test_engine.py", line 158, in test_net_on_dataset
args, dataset_name, proposal_file, output_dir, gpu_id=gpu_id
File "/home/ustc/文档/PANet-master/lib/core/test_engine.py", line 232, in test_net
model = initialize_model_from_cfg(args, gpu_id=gpu_id)
File "/home/ustc/文档/PANet-master/lib/core/test_engine.py", line 322, in initialize_model_from_cfg
model = model_builder.Generalized_RCNN()
File "/home/ustc/文档/PANet-master/lib/modeling/model_builder.py", line 124, in __init__
self._init_modules()
File "/home/ustc/文档/PANet-master/lib/modeling/model_builder.py", line 128, in _init_modules
resnet_utils.load_pretrained_imagenet_weights(self)
File "/home/ustc/文档/PANet-master/lib/utils/resnet_weights_helper.py", line 29, in load_pretrained_imagenet_weights
pretrianed_state_dict = convert_state_dict(torch.load(weights_file))
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/serialization.py", line 303, in load
return _load(f, map_location, pickle_module)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/serialization.py", line 454, in _load
return legacy_load(f)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/site-packages/torch/serialization.py", line 383, in legacy_load
tar.extract('storages', path=tmpdir)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/tarfile.py", line 2034, in extract
tarinfo = self.getmember(member)
File "/home/ustc/anaconda3/envs/py36/lib/python3.6/tarfile.py", line 1745, in getmember
raise KeyError("filename %r not found" % name)
KeyError: "filename 'storages' not found"

于是乎下载resnet50_caffe.pth,搜了一下没发现什么下载链接,因为这个项目利用了detectron.pytorch这个项目的代码,所以我决定利用detectron.pytorch下载模型权重,项目地址如下https://github.com/roytseng-tw/Detectron.pytorch

安装了几个包后,我执行python download_imagenet_weights.py --targets=resnet50_caffe.pth,过了一会,文件下载好了,太开心了,跑起来

python tools/test_net.py --dataset coco2017 --cfg configs/panet/e2e_panet_R-50-FPN_2x_mask.yaml --load_ckpt /home/ustc/文档/PANet-master/data/pretrained_model/panet_mask_step179999.pth

后面的权重文件是从项目提供的链接下载的,一切妥当,开始对5000张图片进行检测

然后分别执行bbox评估和分割评估,如下

最后的输出为评估结果

接下来跑一下coco2017的训练集,如果没啥问题,就可以着手跑自己的数据了。

python tools/train_net_step.py --dataset coco2017 --cfg configs/panet/e2e_panet_R-50-FPN_2x_mask.yaml  --bs 2

我用的这台机器只有一块1080ti,所以把把batch_size设为2,论文里是8块P40,羡慕啊。

训练跑起来后的样子如下

可以看到还需要13天训练完毕,此刻内心是平淡的~

下面就研究如何训练自己的数据了,我采取替换法,就是文件夹文件名啥的都不换,直接把里面的数据换成自己的,把train2017里面的图片换成自己的,把instances_train2017.json里面的注释文件换成自己的,把图片换成自己的,复制粘贴就行了,不过你的标注文件不一定与coco的格式一致,所以这块是麻烦的地方。

我采用的标注工具是VIA,使用说明网上有不少博客,如何将VIA格式转换为COCO格式呢,需要仔细看一下二者的区别,

VIA格式

用json存储,这一点与COCO相同,json就是一个大字典,VIA采用的键值为图像名称加一个size(这个size我没搞清楚,猜测是所有mask的面积和),图像名称下面仍然为一个字典,共有filename,size,regions,file_attributes四个键,文件名就是图像名,size按照我猜测的为掩码面积和,regions里面就是一个一个mask,file_attribute我没有用到,置为空。截图看一下

regions下面存放着许多region,每个region有shape_attributes和region_attributes两个属性,一个存放标注的多边形,一个存放类别,region就是关键。

COCO格式

关于COCO的格式,太多太多博客了,就大致看一下吧

总的框架

其中info,licenses都是无关紧要的

对于我们来说,需要关注的是images,annotatios还有categories,分别看一下

对于我们而言,id是可以自行生成的,类别是手动添加的,逐个累加就好,需要计算的是area,bbox,因为VIA格式中没有这两个属性,另外,我的应用场景中,物体都是单一的,所以crowd都设为0,这一点可能需要注意一下

然后就开始具体的转换了,我把代码放在了 https://github.com/codingwolfman/VIA2COCO

将VIA转为COCO后,就可以照常跑起来了。

PANet训练自己的数据(VIA标注)的更多相关文章

  1. smallcorgi/Faster-RCNN_TF训练自己的数据

    熟悉了github项目提供的训练测试后,可以来训练自己的数据了.本文只介绍改动最少的方法,只训练2个类, 即自己添加的类(如person)和 background,使用的数据格式为pascal_voc ...

  2. YOLOv3:训练自己的数据(附优化与问题总结)

    环境说明 系统:ubuntu16.04 显卡:Tesla k80 12G显存 python环境: 2.7 && 3.6 前提条件:cuda9.0 cudnn7.0 opencv3.4. ...

  3. YOLO2解读,训练自己的数据及相关转载以供学习

    https://pjreddie.com/darknet/yolo/ 具体安装及使用可以参考官方文档https://github.com/pjreddie/darknet https://blog.c ...

  4. caffe学习三:使用Faster RCNN训练自己的数据

    本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于c ...

  5. faster r-cnn 在CPU配置下训练自己的数据

    因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net ...

  6. pytorch识别CIFAR10:训练ResNet-34(数据增强,准确率提升到92.6%)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过减小卷积核训练准确率提升到85%. 这里对训练数据集做数据 ...

  7. caffe 用faster rcnn 训练自己的数据 遇到的问题

    1 . 怎么处理那些pyx和.c .h文件 在lib下有一些文件为.pyx文件,遇到不能import可以cython 那个文件,然后把lib文件夹重新make一下. 遇到.c 和 .h一样的操作. 2 ...

  8. caffe 如何训练自己的数据图片

    申明:此教程加工于caffe 如何训练自己的数据图片 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载im ...

  9. 人脸检测及识别python实现系列(3)——为模型训练准备人脸数据

    人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动 ...

随机推荐

  1. sql基本查询语句练习

    student(S#,Sname,Sage,Ssex) 学生表       S#:学号: Sname:学生姓名:Sage:学生年龄:Ssex:学生性别 Course(C#,Cname,T#) 课程表 ...

  2. HDU 4921 Map(状态压缩)

    题意看这篇博客. 思路参考的这篇博客. 补充:面对这种问题有一个常见的套路.比如计算若干个区间对答案的贡献这种问题,直接暴力可能复杂度到O(n ^ 2), 而我们可以计算出每个元素在多少个合法区间中, ...

  3. condition实现通知部分线程

    多个condition实现通知部分线程: import java.util.concurrent.locks.Condition; import java.util.concurrent.locks. ...

  4. nexus admin 从文件角度进行密码重置

    \sonatype-work\nexus\conf\security.xml 文件中保存账号密码信息. 打开 vi nexus-2.10.0-02-bundle\sonatype-work\nexus ...

  5. 你可能不知道的pdf的功能

    可以创建交互式的pdf,比如在pdf页面添加一个按钮, 添加一个文本框. 上篇文章说了pdf有可移植性,这是个非常重要的特性,我就想能否把3d模型放入到pdf中,这样即使对方电脑没有3d软件也可以查看 ...

  6. Python中list常用的10个基本方法----list的灰魔法

    ########################list 的常用的10个基本方法################################## list 类 列表# 1 列表的基本格式#2 可以 ...

  7. malloc/free 与 new/delete同与不同

    一.相同点 1.都是从堆上申请内存,由程序员来掌控这段内存的申请与释放. 2.对于内置类型,两者使用没有太大区别. 二.不同点 1.malloc/free是C++/C语言的标准库函数,需要库支持:ne ...

  8. Vistual Studio的导出模板功能

    应用场景,每个项目有自己固定的目录结构和引用文件, 无需每次创建一个项目,就手工一一将那些目录再new一遍.如图所示 菜单  文件=>导出模板 之后的操作基本上一路"下一步" ...

  9. gRPC官方文档(异步基础: C++)

    文章来自gRPC 官方文档中文版 异步基础: C++ 本教程介绍如何使用 C++ 的 gRPC 异步/非阻塞 API 去实现简单的服务器和客户端.假设你已经熟悉实现同步 gRPC 代码,如gRPC 基 ...

  10. JAVA学习第三篇Boolean

    Boolean是布尔值. 布尔值只有两个值:真和假.写作:true false. 那么如何使用呢? 最简单的用法: public class demo{ public static void main ...