P4213 【模板】杜教筛(Sum)
\(\color{#0066ff}{题 目 描 述}\)
给定一个正整数\(N(N\le2^{31}-1)\)
求
\(\begin{aligned} ans_1=\sum_{i=1}^n\varphi(i) \end{aligned}\)
\(\begin{aligned} ans_2=\sum_{i=1}^n \mu(i) \end{aligned}\)
\(\color{#0066ff}{输 入 格 式}\)
一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问
\(\color{ #0066ff }{ 输 出 格 式 }\)
一共T行,每行两个用空格分隔的数ans1,ans2
\(\color{#0066ff}{输入样例}\)
6
1
2
8
13
30
2333
\(\color{#0066ff}{ 输 出 样 例}\)
1 1
2 0
22 -2
58 -3
278 -3
1655470 2
\(\color{#0066ff}{数 据 范 围 与 提 示}\)
\(N \leq 2^{31}\)
\(\color{#0066ff}{题 解}\)
前置知识1 : 狄利克雷卷积
对于任意函数f,g,有\(\begin{aligned} h(i) = \sum_{d|i}f(d)*g(\frac{n}{d})\end{aligned}\)
h即为f和g的卷积
常用函数
1、\(i(n) = 1\)
2、\(id(n) = n\)
3、\(e(n)=\left\{\begin{aligned}1\ \ \ n = 1 \\ 0 \ \ \ n \neq 1\end{aligned}\right.\)
4、欧拉函数\(\varphi(n)\)
5、懵逼钨丝函数\(\mu(n)=\left\{\begin{aligned}1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n = 1 \\ (-1)^k \ \ \ n由k个不同质数相乘得到\\ 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 其它情况\end{aligned}\right.\)
6、\(\sigma(n)=n的约数和\)
7、\(d(n)=n的约数个数\)
常用卷积
1、\(i*\mu = e\)
2、\(e*a=a\)
3、\(\mu * id= \varphi\)
4、\(i*id=\sigma\)
5、\(i*i=d\)
6、\(i*\varphi=id\)
杜教筛
已知\(f(i)\)
用来求\(\begin{aligned}\sum_{i = 1}^n f(i)\end{aligned},n\leq 2^{31}\)
定义\(h(i)=(f*g)(i)=\begin{aligned}\sum_{d|i}f(d)*g(\frac{i}{d})\end{aligned}\)
\(\displaystyle\sum_{i=1}^nh(i)\)
用定义展开
\(=\displaystyle\sum_{i=1}^n\sum_{d|i}g(d)f\left(\frac i d\right)\)
d的范围也是【1.n】的,所以改成枚举d,找它的倍数,这个式子是在求和,找全了就行
\(=\displaystyle \sum_{d=1}^ng(d)\sum_{d|i}f\left(\frac i d \right)\)
把后面变一下
\(=\displaystyle \sum_{d=1}^ng(d)\sum_{i=1}^{\left\lfloor\frac n d \right \rfloor}f( i)\)
然后
\(=\displaystyle \sum_{i=1}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)\)
所以
\(\displaystyle \sum_{i=1}^nh(i)=\sum_{i=1}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)\)
有一个好像没用的式子
\(\displaystyle g(1)S(n)=\sum_{i=1}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)\)
上式把后面移项就成恒等式了
我们把右面第一项用刚刚的结论换走
\(\displaystyle g(1)S(n)=\sum_{i=1}^nh(i)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)\)
这。。是个递归式
就没了
对于S的递归,用数列分块
一般的h和g都很好求(构造)
对于本题来说
\(i*\varphi=id\)
所以对于\(\varphi\)
\(\displaystyle S(n)=\frac{n*(n+1)}{2}-\sum_{i=2}^nS\left(\left\lfloor\frac n i\right\rfloor\right)\)
刚刚有\(i*\mu=e\)
所以
\(\displaystyle S(n)=1-\sum_{i=2}^nS\left(\left\lfloor\frac n i\right\rfloor\right)\)
没了。。。
把前\(4*10^6\)的东西线性筛一下
最后的复杂度\(O(n^{\frac{2}{3}})\)不会证
#include <bits/stdc++.h>
typedef long long LL;
const int maxn = 4e6;
const int maxx = 4e6 + 10;
int in() {
char ch; int x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
while(isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
return x * f;
}
bool vis[maxx];
LL phi[maxx];
int mu[maxx], pri[maxx], tot;
std::map<int, LL> P;
std::map<int, int> M;
void predoit() {
phi[1] = mu[1] = 1LL;
for(int i = 2; i <= maxn; i++) {
if(!vis[i]) {
pri[++tot] = i;
phi[i] = i - 1;
mu[i] = -1;
}
for(int j = 1; j <= tot && i * pri[j] <= maxn; j++) {
vis[i * pri[j]] = true;
if(i % pri[j] == 0) {
phi[i * pri[j]] = phi[i] * pri[j];
mu[i * pri[j]] = 0;
break;
}
else {
phi[i * pri[j]] = phi[i] * (pri[j] - 1);
mu[i * pri[j]] = -mu[i];
}
}
}
for(int i = 2; i <= maxn; i++) {
phi[i] += phi[i - 1];
mu[i] += mu[i - 1];
}
}
LL workphi(int now)
{
if(now <= maxn) return phi[now];
if(P.count(now)) return P[now];
LL ans = now * (now + 1LL) / 2;
for(int i = 2, lst; i <= now; i = lst + 1) {
lst = now / (now / i);
ans -= 1LL * (lst - i + 1LL) * workphi(now / i);
}
return P[now] = ans;
}
int workmu(int now)
{
if(now <= maxn) return mu[now];
if(M.count(now)) return M[now];
int ans = 1;
for(int i = 2, lst; i <= now; i = lst + 1) {
lst = now / (now / i);
ans -= workmu(now / i) * (lst - i + 1);
}
return M[now] = ans;
}
int main() {
predoit();
for(int T = in(); T --> 0;) {
int n = in();
printf("%lld %d\n", workphi(n), workmu(n));
}
return 0;
}
P4213 【模板】杜教筛(Sum)的更多相关文章
- p4213 【模板】杜教筛(Sum)
传送门 分析 我们知道 $\varphi * 1 = id$ $\mu * 1 = e$ 杜教筛即可 代码 #include<iostream> #include<cstdio> ...
- [模板] 杜教筛 && bzoj3944-Sum
杜教筛 浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客 杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和. 算法 ...
- luoguP4213 [模板]杜教筛
https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块 ...
- 洛谷P4213(杜教筛)
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e6 + 3; ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...
- [洛谷P4213]【模板】杜教筛(Sum)
题目大意:给你$n$,求:$$\sum\limits_{i=1}^n\varphi(i),\sum\limits_{i=1}^n\mu(i)$$最多$10$组数据,$n\leqslant2^{31}- ...
- P4213【模板】杜教筛(Sum)
思路:杜教筛 提交:\(2\)次 错因:\(\varphi(i)\)的前缀和用\(int\)存的 题解: 对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题. 先要构造\(h= ...
- BZOJ3944: Sum(杜教筛模板)
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...
随机推荐
- Drools学习笔记4—Consequence/RHS
Right Hand Side,当LHS所有条件满足才会执行 可以使用LHS部分定义的绑定变量.全局变量.或者直接编写JAVA代码. 提供宏函数操作working memory fact对象,如ins ...
- JS中substring()方法(用于提取字符串中介于两个指定下标之间的字符)
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 解决html中的乱码问题
1.最简单粗暴的方法就是加一个meta标签,不过值得我们注意的是我们的meta标签是与我们的head标签是同一级的,所以千万不能将meta标签加到我们的head标签中. <meta http-e ...
- Win 2008 R2安装SQL Server 2008“性能计数器注册表配置单元一致性”失败的解决办法
Win 2008 R2安装SQL Server 2008“性能计数器注册表配置单元一致性”失败的解决办法(2011-02-23 19:37:32) 转载▼ 今天在惠普服务器上安装数据库2008时, ...
- [patl2-020]功夫传人
解题关键:dfs的简单应用,需要注意类型double与int #include<cstdio> #include<cstring> #include<algorithm& ...
- SpringMVC_01 SpringMVC五大组件、SpringMVC编程步骤(不使用注解进行配置)、SpringMVC编程步骤(利用注解进行配置)、参数获取、响应数据
1 什么是SpringMVC 是一个mvc框架,用来简化基于mvc架构的web应用程序的 开发. 2 SpringMVC五大组件 DispatcherServlet (前端控制器) HanlderMa ...
- g2o20160424 CMakeLists.txt
LIB_PREFIX: 设置生成库的前缀 SET(LIB_PREFIX g2o_) # The library prefix SET(LIB_PREFIX g2o_) 变量的默认配置 # defaul ...
- CF 464E The Classic Problem
补一补之前听课时候的题. 考虑使用dij算法求最短路,因为边权存不下,所以考虑用主席树维护二进制位,因为每一次都只会在一个位置进行修改,所以可以暴力进位,这样均摊复杂度是对的. <算法导论> ...
- js中使用Java的方式
1. 使用DWR框架 2. 使用AJAX方式
- LeetCode第114题:二叉树展开为链表
问题描述 给定一个二叉树,原地将它展开为链表. 例如,给定二叉树 1 / \ 2 5 / \ \ 3 4 6 将其展开为: 1 \ 2 \ 3 \ 4 \ 5 \ 6 解题思路 二叉树的一些算法题都可 ...