Oracle

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 79    Accepted Submission(s): 41

Problem Description
There is once a king and queen, rulers of an unnamed city, who have three daughters of conspicuous beauty.

The
youngest and most beautiful is Psyche, whose admirers, neglecting the
proper worship of the love goddess Venus, instead pray and make
offerings to her. Her father, the king, is desperate to know about her
destiny, so he comes to the Delphi Temple to ask for an oracle.

The oracle is an integer n without leading zeroes.

To
get the meaning, he needs to rearrange the digits and split the number
into <b>two positive integers without leading zeroes</b>,
and their sum should be as large as possible.

Help him to work out the maximum sum. It might be impossible to do that. If so, print `Uncertain`.

 
Input
The first line of the input contains an integer T (1≤T≤10), which denotes the number of test cases.

For each test case, the single line contains an integer n (1≤n<1010000000).

 
Output
For each test case, print a positive integer or a string `Uncertain`.
 
Sample Input
3
112
233
1
 
Sample Output
22
35
Uncertain

Hint

In the first example, it is optimal to split $ 112 $ into $ 21 $ and $ 1 $, and their sum is $ 21 + 1 = 22 $.

In the second example, it is optimal to split $ 233 $ into $ 2 $ and $ 33 $, and their sum is $ 2 + 33 = 35 $.

In the third example, it is impossible to split single digit $ 1 $ into two parts.

 
Source
 
题意:将一个大数分解成两个数字,要求两个数字是没有前导0的正整数,然后问相加的结果的最大值.
题解:先对输入的串从大到小排个序,如果输入的串长度为1或者 除了第一位全部都是 0,那么无解,其余的情况将第一个大于0的数取出来,然后剩下的数组成一个串相加即可。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
#define N 10000005
char str[N];
char result[N];
char b[];
int cmp(char a,char b)
{
return a>b;
}
void reverse( char *s ) /*将字符串逆置*/
{
int length;
int i = ;
char temp;
length = strlen( s );
while( i < length - i - )
{
temp = s[i];
s[i] = s[length - i - ];
s[length - i - ] = temp;
i++;
}
}
void AddBigNum( char* s1, char* s2, char* result )
{
int len1 = strlen( s1 );
int len2 = strlen( s2 );
int acc = , temp, i; /*acc为进位标记*/
if( s1 == NULL || s2 == NULL || result == NULL )
{
return;
}
reverse( s1 );
reverse( s2 );
for( i = ; i < len1 && i < len2; i++ )
{
temp = s1[i] - '' + s2[i] - '' + acc; /*计算每位的实际和*/
result[i] = temp % + ''; /*通过求余数来确定每位的最终值*/
if( temp >= ) /*通过这个if..else..条件来判断是否有进位,并设置进位值*/
acc = ;
else
acc = ;
}
if( i < len1 ) /*两个加数位数不同*/
{
for( ; i < len1; i++ )
{
temp = s1[i] - '' + acc; /*依旧要考虑进位,比如9999 + 1的情况*/
result[i] = temp % + '';
if( temp >= )
acc = ;
else
acc = ;
}
}
if( i < len2 )
{
for( ; i < len2; i++ )
{
temp = s2[i] - '' + acc;
result[i] = temp % + '';
if( temp >= )
acc = ;
else
acc = ;
}
}
if( acc == ) /*考虑如:123 + 911 = 1034的情况,如果不增加这个条件会得到结果为034,进位被舍弃*/
result[i++] = '';
result[i] = '\0';
reverse( result );
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%s",str);
int len = strlen(str);
sort(str,str+len,cmp);
if(len==)
{
printf("Uncertain\n");
}
else
{
bool flag = true;
int ans = ;
for(int i=len-; i>=; i--)
{
if(str[i]!='')
{
ans = i;
break;
}
}
if(ans==)
{
printf("Uncertain\n");
continue;
}
b[] = str[ans];
int id = ;
for(int i=; i<len; i++)
{
if(i==ans) continue;
str[id++] = str[i];
}
str[id]='\0';
AddBigNum(str,b,result);
printf("%s\n",result);
}
}
return ;
}

Arrange

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 74    Accepted Submission(s): 30

Problem Description
Accidentally, Cupid, god of desire has hurt himself with his own dart and fallen in love with Psyche.

This has drawn the fury of his mother, Venus. The goddess then throws before Psyche a great mass of mixed crops.

There are n heaps of crops in total, numbered from 1 to n.

Psyche needs to arrange them in a certain order, assume crops on the i-th position is Ai.

She is given some information about the final order of the crops:

1. the minimum value of A1,A2,...,Ai is Bi.

2. the maximum value of A1,A2,...,Ai is Ci.

She wants to know the number of valid permutations. As this number can be large, output it modulo 998244353.

Note that if there is no valid permutation, the answer is 0.

 
Input
The first line of input contains an integer T (1≤T≤15), which denotes the number of testcases.

For each test case, the first line of input contains single integer n (1≤n≤105).

The second line contains n integers, the i-th integer denotes Bi (1≤Bi≤n).

The third line contains n integers, the i-th integer denotes Ci (1≤Ci≤n).

 
Output
For each testcase, print the number of valid permutations modulo 998244353.
 
Sample Input
2
3
2 1 1
2 2 3
5
5 4 3 2 1
1 2 3 4 5
 
Sample Output
1
0

Hint

In the first example, there is only one valid permutation (2,1,3) .

In the second example, it is obvious that there is no valid permutation.

 
Source
 
题意:在由 1 - n 中的数字组成的n个谷堆,假设前 i 个谷堆的最大值是C[i],最小值是B[i],现在知道这n堆谷堆前所有前缀的最大值和最小值,问这些谷堆总共有多少种组成方式??
题解:递推,排除掉5种不可能的情况,1.b[i]>b[i-1] 2,c[i]<c[i-1] 3,b[i]>c[i] 4.c[1]!=b[1] 5.b[i],c[i] < 1 || > n ,然后递推,如果当前产生的新的 b[i]或者 c[i] 那么dp[i] = dp[i-1] ,如果当前 b[i-1] = b[i] && c[i-1] = c[i] ,那么我们可以在 [b[i],c[i]]中任选一个数,但是由于谷堆是互不相同的,所以每次我们的选项都会变少,弄个计数器计算一下当前已经选了多少种,减掉之后答案即为 dp[i] = dp[i-1]*(c[i]-b[i]+1-num)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const long long mod = ;
const int N = ;
int b[N],c[N];
long long dp[N];
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
int n;
scanf("%d",&n);
int MIN = ;
int MAX = -;
bool flag = true;
for(int i=;i<=n;i++){
scanf("%d",&b[i]);
if(b[i]<||b[i]>n) flag = false;
if(b[i]>MIN) flag = false;
MIN = min(MIN,b[i]);
}
for(int i=;i<=n;i++){
scanf("%d",&c[i]);
if(c[i]<MAX) flag = false;
if(c[i]<||c[i]>n) flag = false;
MAX = max(MAX,c[i]);
if(c[i]<b[i]) flag = false;
}
if(!flag||c[]!=b[]) printf("0\n");
else{
memset(dp,,sizeof(dp));
dp[] = ;
int num = ;
for(int i=;i<=n;i++){
if(c[i]==c[i-]&&b[i-]==b[i]) {
dp[i] = dp[i-]*(c[i]-b[i]-num+)%mod;
}
else if(b[i]<b[i-]&&c[i-]==c[i]||b[i]==b[i-]&&c[i-]<c[i]){
dp[i] = dp[i-];
}
num++;
}
printf("%I64d\n",dp[n]);
}
}
return ;
}

BestCoder 2nd Anniversary的前两题的更多相关文章

  1. BestCoder 2nd Anniversary

    A题 Oracle http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=703&pid=1001 大数相加: ...

  2. Educational Codeforces Round 58 (Rated for Div. 2) (前两题题解)

    感慨 这次比较昏迷最近算法有点飘,都在玩pygame...做出第一题让人hack了,第二题还昏迷想错了 A Minimum Integer(数学) 水题,上来就能做出来但是让人hack成了tle,所以 ...

  3. 牛客 2020.10.20 TG 前两题

    T1 GCD 数学水题... 对于每个数,如果这个数有两个及以上的质因数的话,它所有除 \(1\) 之外的因数求 \(GCD\) 的值一定为 \(1\).那么判断是否是质数或质数的次方即可(质数除 \ ...

  4. hdu 5720 BestCoder 2nd Anniversary Wool 推理+一维区间的并

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5720 题意:有n(n <= 105)个数 ,每个数小于等于 1018:问在给定的[L,R]区间中 ...

  5. BestCoder 2nd Anniversary 1001 Oracle

    找到最小的非零数字拆开来相加. 高精度. #include <iostream> #include <cstdio> #include <cstring> #inc ...

  6. hihocoder 前两题思路

    1800 : 玩具设计师 二维前缀和的写法有很多,最常见的是s[x-1][y]+s[x][y-1]-s[x-1][y-1]+a[x][y]; 涉及二维矩阵求和,联想前缀和,求>=指定面积的最大耐 ...

  7. BestCoder 2nd Anniversary/HDU 5719 姿势

    Arrange Accepts: 221 Submissions: 1401 Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 262144/2 ...

  8. BestCoder 2nd Anniversary/HDU 5718 高精度 模拟

    Oracle Accepts: 599 Submissions: 2576 Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 262144/26 ...

  9. hdu 5719 BestCoder 2nd Anniversary B Arrange 简单计数问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5719 题意:一个数列为1~N的排列,给定mn[1...n]和mx[1...n],问有符合的排列数为多少 ...

随机推荐

  1. WCF入门二[WCF的配置文件]

    一.概述 往往在很多项目中数据库连接字符串.变量和一些动态的加载类会写在配置文件中.WCF也会在配置文件中写入一些配置参数,比如服务的地址.服务用于发送和接收消息的传输和消息编码等,通过配置文件可以灵 ...

  2. (原)Unreal 渲染模块 渲染流程

    @author:白袍小道 浏览分享随缘,评论不喷亦可.     扯淡部分: 在temp中,乱七八糟的说了下大致的UE过程.下面我们还是稍微别那么任性,一步步来吧.     UE渲染模块牵扯到场景遍历. ...

  3. 源码分析(一) HashMap 源码分析|JDK8

    HashMap是一个普遍应用于各大JAVA平台的最最最常用的数据结构.<K,V>的存储形式使HashMap备受广大java程序员的喜欢.JDK8中HashMap发生了很大的变化,例如:之前 ...

  4. Linux系统源码安装cloud-init

    参考:https://cloud.tencent.com/document/product/213/12587使用以下命令下载 cloud-init 源码包 官网下载地址:https://launch ...

  5. Heat 如何来实现和支持编排

    编排 编排,顾名思义,就是按照一定的目的依次排列.在 IT 的世界里头,一个完整的编排一般包括设置服务器上机器.安装 CPU.内存.硬盘.通电.插入网络接口.安装操作系统.配置操作系统.安装中间件.配 ...

  6. Ubuntu16.04 问题汇总

    Ubuntu16.04安装wps并解决系统缺失字体问题 http://www.cnblogs.com/liutongqing/p/6388160.html

  7. 利用traceback精确定位错误发生的位置

    背景:在线上代码发生bug时经常只知道错误的原因,但是很难快速的定位到错误发生的位置. 如下图,我们只知道错误. 而在try...except...后添加traceback即可以明确的抛出错误的地址. ...

  8. Java 多线程(Thread)学习

    多线程:就是进程的扩展,实现并发.一个进程可以包含多个线程,进程一般是由操作系统控制,而线程就是由程序员控制的,所以作为编程人员做好线程是我们的重点. 线程和进程一样分为五个阶段:创建.就绪.运行.阻 ...

  9. PAT 甲级 1011 World Cup Betting

    https://pintia.cn/problem-sets/994805342720868352/problems/994805504927186944 With the 2010 FIFA Wor ...

  10. myEclipse如何将程序部署到tomcat(附录MyEclipse调试快捷键)

    部署 1.选中你要部署的项目,在工具栏找到 Deploy MyEclipse J2EE Project to Server 2.单击Add,即出现如下界面.选择相应的Server,要和你在配置tomc ...