传送门

还是看题解的啦

先考虑一个显而易见的结论:A和B二进制下最高的几位相同是没用的(设去掉的那些位之和为sum)

然后我们设\(d\)为二进制下从高位到低位第一位不相同的,\(k\)为B从高位到低位第二个不为0的

然后我们分几段来统计答案

首先,\([A,2^d-1+sum]\)显然是可以凑出来的

然后,考虑\(k\),发现\([2^d+sum,2^d+2^{k+1}+sum-1]\)也是可以凑出来的

最后,我们发现还有一种情况漏算了,确定\(d\),所以区间就是\([A+2^d,sum+2^{d+1}]\)

求并就好啦

讲的好乱啊,应该只有我一个人会来看吧

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
void read(long long &x){
char ch;bool ok;
for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=110;
long long a,b,x,y,l,r,ans,ll,rr;
int aa[maxn],bb[maxn],lena,lenb,len,k;
int main(){
read(a),read(b);x=a,y=b;
while(a)aa[++lena]=a&1,a>>=1;
while(b)bb[++lenb]=b&1,b>>=1;
for(rg int i=max(lena,lenb);i;i--){
if(aa[i]!=bb[i]){len=i;break;}
x-=1ll*aa[i]<<(i-1);
y-=1ll*bb[i]<<(i-1);
}
for(rg int i=len-1;i;i--)if(bb[i]){k=i;break;}
l=x,r=(1ll<<(len-1))+(1ll<<k)-1;
ll=(1ll<<(len-1))+x,rr=(1ll<<len)-1;
if(ll>r)ans=r-l+1+rr-ll+1;
else ans=rr-l+1;
printf("%lld\n",ans);
}

AT2382 A or...or B Problem的更多相关文章

  1. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  2. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  3. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  4. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  5. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  6. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  9. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. Tomcat报错:HTTP Status 500 - Wrapper cannot find servlet class

    HTTP Status 500 - Wrapper cannot find servlet class com.servlet.servlet.RegServlet or a class it dep ...

  2. C++中类型转换

    static_cast            静态类型转换. 在编译的时候C++编译器会做类型检查,基本类型能转换,指针类型不进行转换. C语言中隐式类型转换的地方均可以使用static_cast. ...

  3. JAVA中的优化技巧(适用Android)

    最近的机器内存又爆满了,除了新增机器内存外,还应该好好review一下我们的代码,有很多代码编写过于随意化,这些不好的习惯或对程序语言的不了解是应该好好打压打压了. 下面是参考网络资源总结的一些在Ja ...

  4. poj3252 Round Numbers[数位DP]

    地址 拆成2进制位做dp记搜就行了,带一下前导0,将0和1的个数带到状态里面,每种0和1的个数讨论一下,累加即可. WA记录:line29. #include<iostream> #inc ...

  5. bzoj 3653: 谈笑风生 可持久化线段树

    题目大意 在一棵单位边权的有根树上支持询问: 给定a,k求满足下列条件的有序三元对的个数. a,b,c互不相同 a,b均为c的祖先 a,b树上距离<=k 题解 solution 1 首先我们知道 ...

  6. 非系统数据文件损坏,rman备份恢复

    实验前提:已经做好备份. SQL> col file_name for a50select file_id,file_name from dba_data_files; FILE_ID FILE ...

  7. Java中String和byte[]间的 转换

    数据库的字段中使用了blob类型时,在entity中此字段可以对应为byte[] 类型,保存到数据库中时需要把传入的参数转为byte[]类型,读取的时候再通过将byte[]类型转换为String类型. ...

  8. nginx利用proxy_cache来缓存文件

    为什么要做web cache,我想大家最主要的是解决流量的压力.随着网站流量的提升,如果只是单台机器既处理静态文件,又处理动态脚本,显然效率很难上升,不能处理日益上涨的流量压力.与此同时某些网站的页面 ...

  9. myeclipse保存时弹出Building workspace

    最近做项目,每次保存修改的东西.myeclipse都会building workspace(重新编译)一下.并且那 building的速度真不够慢的啊. 严重影响编程速度. 在网上也发现遇到此问题的很 ...

  10. 3 K8s安裝ELK+filebeat

    1 Filebeat: apiVersion: v1 kind: Service metadata: name: XX spec: ports: - name: http port: targetPo ...