传送门

还是看题解的啦

先考虑一个显而易见的结论:A和B二进制下最高的几位相同是没用的(设去掉的那些位之和为sum)

然后我们设\(d\)为二进制下从高位到低位第一位不相同的,\(k\)为B从高位到低位第二个不为0的

然后我们分几段来统计答案

首先,\([A,2^d-1+sum]\)显然是可以凑出来的

然后,考虑\(k\),发现\([2^d+sum,2^d+2^{k+1}+sum-1]\)也是可以凑出来的

最后,我们发现还有一种情况漏算了,确定\(d\),所以区间就是\([A+2^d,sum+2^{d+1}]\)

求并就好啦

讲的好乱啊,应该只有我一个人会来看吧

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
void read(long long &x){
char ch;bool ok;
for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=110;
long long a,b,x,y,l,r,ans,ll,rr;
int aa[maxn],bb[maxn],lena,lenb,len,k;
int main(){
read(a),read(b);x=a,y=b;
while(a)aa[++lena]=a&1,a>>=1;
while(b)bb[++lenb]=b&1,b>>=1;
for(rg int i=max(lena,lenb);i;i--){
if(aa[i]!=bb[i]){len=i;break;}
x-=1ll*aa[i]<<(i-1);
y-=1ll*bb[i]<<(i-1);
}
for(rg int i=len-1;i;i--)if(bb[i]){k=i;break;}
l=x,r=(1ll<<(len-1))+(1ll<<k)-1;
ll=(1ll<<(len-1))+x,rr=(1ll<<len)-1;
if(ll>r)ans=r-l+1+rr-ll+1;
else ans=rr-l+1;
printf("%lld\n",ans);
}

AT2382 A or...or B Problem的更多相关文章

  1. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  2. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  3. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  4. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  5. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  6. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  9. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. 前端多媒体(7)—— 在浏览器中实现rtmp推流

    示例:https://young-cowboy.github.io/gallery/rtmp_client/index.html 在国内的直播场景中通常使用,rtmp协议作为推流协议.RTMP是Rea ...

  2. leetcode 162 Find Peak Element(二分法)

    A peak element is an element that is greater than its neighbors. Given an input array where num[i] ≠ ...

  3. perl: warning: Falling back to the standard locale ("C").

    /********************************************************************************** * perl: warning: ...

  4. [原]NYOJ-开灯问题-77

    大学生程序代写 //http://acm.nyist.net/JudgeOnline/problem.php?pid=77 /*题目77题目信息运行结果本题排行讨论区开灯问题 时间限制:3000 ms ...

  5. 浅谈vue路由原理

    Vue的路由实现:hash模式 和 history模式 hash模式:在浏览器中符号“#”,#以及#后面的字符称之为hash,用window.location.hash读取: 特点:hash虽然在UR ...

  6. vs code 安装Scala

    首先本机要安装scala(官网肿么下不了,CSDN上面下的): 配置scala到环境变量PATH中(Scala的根目录): VS中安装以下扩展: 1. Scala: 2. Sbt: 3. Code R ...

  7. 洛谷【P1138】第k小整数

    题目传送门:https://www.luogu.org/problemnew/show/P1138 桶排: 对于值域在可以接受的范围内时,我们可以用不依赖比较的桶排去将数据排序.因为桶排不依赖比较排序 ...

  8. Bellman-Ford算法及其队列优化(SPFA)

    一.算法概述 Bellman-Ford算法解决的是一般情况下的单源最短路径问题.所谓单源最短路径问题:给定一个图G=(V,E),我们希望找到从给定源结点s属于V到每个结点v属于V的最短路径.单源最短路 ...

  9. Poj 2662,2909 Goldbach's Conjecture (素数判定)

    一.Description In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard ...

  10. Poj 2602 Superlong sums(大数相加)

    一.Description The creators of a new programming language D++ have found out that whatever limit for ...