Python3 数据可视化之matplotlib、Pygal、requests
matplotlib的学习和使用
matplotlib的安装
pip3 install matplotlib
简单的折线图
import matplotlib.pyplot as plt
#绘制简单的图表
input_values = [1,2,3,4,5]
squares = [1,4,9,16,25]
plt.plot(input_values,squares,linewidth=5)
#设置图表的标题 并给坐标轴加上标签
plt.title("Square Number",fontsize=24)
plt.xlabel("Value",fontsize=24)
plt.ylabel("Square of Value",fontsize=14)
#设置刻度标记的大小
plt.tick_params(axis='both',labelsize=14)
#显示图表
plt.show()
#保存在当前的目录下,文件名为squares_plot.png
#plt.savefig('squares_plot.png', bbox_inches='tight')
绘制简单的散点图
import matplotlib.pyplot as plt
x_values = [1, 2, 3, 4, 5]
y_values = [1, 4, 9, 16, 25]
plt.scatter(x_values, y_values, s=100)
#设置图表的标题 并给坐标轴加上标签
plt.title("Square Number",fontsize=24)
plt.xlabel("Value",fontsize=24)
plt.ylabel("Square of Value",fontsize=14)
#设置刻度标记的大小
plt.tick_params(axis='both',labelsize=14)
plt.show()
import matplotlib.pyplot as plt
#绘制散点图并设置其样式
x_value = list(range(1,1001))
y_value = [x**2 for x in x_value]
#点的颜色 c=(0,0,1,0.5) edgecolors = 'red' 点的边缘颜色
plt.scatter(x_value,y_value,c=y_value,cmap=plt.cm.Blues,edgecolors='none',s=40)
# plt.scatter(2,4,s=200)
#设置图表的标题 并给坐标轴加上标签
plt.title("Square Number",fontsize=24)
plt.xlabel("Value",fontsize=24)
plt.ylabel("Square of Value",fontsize=14)
#设置刻度标记的大小
plt.tick_params(axis='both',labelsize=14)
#设置每个坐标系的取值范围
# plt.axis([0,110,0,110000])
#显示
plt.show()
#显示并保存
#plt.savefig('pyplot_scatter.png',bbox_inches='tight')
绘制随机漫步图
random_walk.py
from random import choice
class RandomWalk():
"""一个生成随机漫步数据的类"""
def __init__(self,num_points=5000):
"""一个生成随机漫步的数据的类"""
self.num_points = num_points;
#所有的随机漫步都始于(0,0)
self.x_value = [0]
self.y_value = [0]
def fill_walk(self):
"""计算随机漫步包含的点"""
#不断漫步,直到列表达到指定的长度
while len(self.x_value) < self.num_points:
#决定前进的方向以及沿这个方向前进的距离
x_direction= choice([1,-1])
x_distance = choice([0,1,2,3,4])
x_step = x_direction*x_distance
y_direction = choice([1,-1])
y_distance = choice([0, 1, 2, 3, 4])
y_step = y_direction * y_distance
#拒绝原地踏步
if x_step == 0 and y_step == 0:
continue
#计算下一个点的x和y值
next_x = self.x_value[-1] + x_step
next_y = self.y_value[-1] + y_step
self.x_value.append(next_x)
self.y_value.append(next_y)
rw_visual.py
import matplotlib.pyplot as plt
#引用同级目录下的文件
from Random_Walk.random_walk import RandomWalk
#创建一个RandomWalk的实例 并将其包含的点都绘制出来
rw = RandomWalk()
rw.fill_walk()
print("test")
point_numbers = list(range(rw.num_points))
plt.scatter(rw.x_value,rw.y_value,c=point_numbers, cmap=plt.cm.Blues,edgecolor='none',s=15)
# 突出起点和终点
plt.scatter(0, 0, c='green',edgecolors='none',s=100)
plt.scatter(rw.x_value[-1], rw.y_value[-1],c='red',edgecolors='none',s=100)
# 设置绘图窗口的尺寸
# plt.figure(figsize=(10, 6))
plt.figure(dpi=128, figsize=(10, 6))
# 隐藏坐标轴
# plt.axes().get_xaxis().set_visible(False)
# plt.axes().get_yaxis().set_visible(False)
plt.show()
Pygal的学习和使用
安装Pygal
pip3 install pygal
绘制简单的直方图
创建骰子类 die.py
from random import randint
class Die():
"""表示一个骰子的类"""
def __init__(self,num_sides=6):
"""骰子默认为6面"""
self.num_sides = num_sides
def roll(self):
"""返回一个位于1和骰子面数之间的随机值"""
return randint(1,self.num_sides)
掷骰子die_visual.py
from Pygal_learn.die import Die
import pygal
#创建一个D6
die = Die()
#掷几次骰子 并将结果存储在一个列表中
results = []
for roll_num in range(1000):
result = die.roll()
results.append(result)
frequencies = []
#分析结果
for value in range(1,die.num_sides+1):
frequency = results.count(value)
frequencies.append(frequency)
#对结果进行可视化
hist = pygal.Bar()
hist.title = "Result of rolling one d6 1000 times"
hist.x_labels = ['1','2','3','4','5','6']
hist.x_title = "Result"
hist.y_title = "Frequency of result"
hist.add("D6",frequencies)
hist.render_to_file("die_visual.svg")
使用Web API
安装requests
pip3 install requests
绘制图表
通过抓取GitHub上受欢迎程度最高的Python项目,绘制出图表
import requests
import pygal
from pygal.style import LightColorizedStyle as LCS,LightenStyle as LS
#执行API调用并存储响应
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
r = requests.get(url)
print("Staus code:",r.status_code)
response_dict = r.json()
print("Total repositories:", response_dict['total_count'])
#探索有关仓库的信息
repo_dicts = response_dict['items']
print('Repositories returned:',len(repo_dicts))
#研究第一个仓库
# repo_dict = repo_dicts[0]
# for key in sorted(repo_dict.keys()):
# print(key)
#研究仓库有关的信息
# Name: macOS-Security-and-Privacy-Guide
# Owner: drduh
# Stars: 12348
# Repository: https://github.com/drduh/macOS-Security-and-Privacy-Guide
# Description: A practical guide to securing macOS.
names,plot_dicts = [],[]
for repo_dict in repo_dicts:
names.append(repo_dict["name"])
# stars.append(repo_dict["stargazers_count"])
plot_dict = {
'value': repo_dict['stargazers_count'],
'label': str(repo_dict['description']),
'xlink': repo_dict['html_url']
}
plot_dicts.append(plot_dict)
#可视化数据
my_config = pygal.Config()
my_config.x_label_rotation = 45
my_config.show_legend = False
my_config.title_font_size = 24
my_config.label_font_size = 14
my_config.major_label_font_size = 18
my_config.truncate_label = 15
my_config.show_y_guides = False
my_config.width = 1000
my_style = LS('#333366',base_style=LCS)
chart = pygal.Bar(my_config,style=my_style)
chart.title = "Most-Stared Python Project on Github"
chart.x_labels = names
print(plot_dicts)
chart.add('',plot_dicts)
chart.render_to_file('python_repos.svg')
4 从json文件中提取数据,并进行可视化
4.1 数据来源:population_data.json。
4.2 一个简单的代码段:
- import json #导入json模版
- filename = 'population_data.png'
- with open(filename) as f:
- pop_data = json.load(f) #加载json文件数据
通过小的代码段了解最基本的原理,具体详情还要去查看手册。
4.3制作简单的世界地图(代码如下)
- import pygal #导入pygal
- wm = pygal.maps.world.World() #正确导入世界地图模块
- wm.title = 'populations of Countries in North America'
- wm.add('North America',{'ca':34126000,'us':309349000,'mx':113423000})
- wm.render_to_file('na_populations.svg') #生成svg文件
结果:
4.4 制作世界地图
代码段:
- import json
- import pygal
- from pygal.style import LightColorizedStyle as LCS, RotateStyle as RS
- from country_codes import get_country_code
- # Load the data into a list.
- filename = 'population_data.json'
- with open(filename) as f:
- pop_data = json.load(f)
- # Build a dictionary of population data.
- cc_populations = {}
- for pop_dict in pop_data:
- if pop_dict['Year'] == '2010':
- country_name = pop_dict['Country Name']
- population = int(float(pop_dict['Value']))
- code = get_country_code(country_name)
- if code:
- cc_populations[code] = population
- # Group the countries into 3 population levels.
- cc_pops_1, cc_pops_2, cc_pops_3 = {}, {}, {}
- for cc, pop in cc_populations.items():
- if pop < 10000000: #分组
- cc_pops_1[cc] = pop
- elif pop < 1000000000:
- cc_pops_2[cc] = pop
- else:
- cc_pops_3[cc] = pop
- # See how many countries are in each level.
- print(len(cc_pops_1), len(cc_pops_2), len(cc_pops_3))
- wm_style = RS('#336699', base_style=LCS)
- wm = pygal.maps.world.World(style=wm_style) #已修改,原代码有错误!
- wm.title = 'World Population in 2010, by Country'
- wm.add('0-10m', cc_pops_1)
- wm.add('10m-1bn', cc_pops_2)
- wm.add('>1bn', cc_pops_3)
- wm.render_to_file('world_population.svg')
辅助代码段country_code.py如下:
- from pygal.maps.world import COUNTRIES
- from pygal_maps_world import i18n #原代码也有错误,现已订正
- def get_country_code(country_name):
- """Return the Pygal 2-digit country code for the given country."""
- for code, name in COUNTRIES.items():
- if name == country_name:
- return code
- # If the country wasn't found, return None.
- return None
监视API的速率限制
大多数API都存在速率限制,即你在特定时间内可执行的请求数存在限制。要获悉你是否接近了GitHub的限制,请在浏览器中输入https://api.github.com/rate_limit ,你将看到类似于下 面的响应:
参考内容:《Python编程:从入门到实践》
Python3 数据可视化之matplotlib、Pygal、requests的更多相关文章
- Python数据可视化——使用Matplotlib创建散点图
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...
- python 数据可视化(matplotlib)
matpotlib 官网 :https://matplotlib.org/index.html matplotlib 可视化示例:https://matplotlib.org/gallery/inde ...
- python的数据可视化库 matplotlib 和 pyecharts
Matplotlib大家都很熟悉 不谈. ---------------------------------------------------------------------------- ...
- 学机器学习,不会数据分析怎么行——数据可视化分析(matplotlib)
前言 前面两篇文章介绍了 python 中两大模块 pandas 和 numpy 的一些基本使用方法,然而,仅仅会处理数据还是不够的,我们需要学会怎么分析,毫无疑问,利用图表对数据进行分析是最容易的, ...
- 绘图和数据可视化工具包——matplotlib
一.Matplotlib介绍 Matplotlib是一个强大的Python**绘图**和**数据可视化**的工具包. # 安装方法 pip install matplotlib # 引用方法 impo ...
- Python数据可视化库-Matplotlib(一)
今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...
- 数据可视化之Matplotlib的使用
1.什么是数据可视化 数据可视化在量化分析当中是一个非常关键的辅助工具,往往我们需要通过可视化技术,对我们的数据进行更清晰的展示,这样也能帮助我们理解交易.理解数据.通过数据的可视化也可以更快速的发现 ...
- Python数据可视化之Matplotlib实现各种图表
数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图.柱状图.线图等图表制作是一个数据分析师必备的技能.Python有两个比较出色的图表制作框架,分别是Matplotlib和 ...
- Windows系统中python3.7安装数据可视化模块Matplotlib、numpy的各种方法汇总
安装环境:Windows10 64位Python3.7 32位 确保已经安装PIP工具命令窗口输入PIP出现以下窗口说明PIP已经成功安装 方法1:(1)在Matplotlib的官网下载电脑对应的版本 ...
随机推荐
- str_replace 替换 小技巧
// $id:1 $id:1,2,3,4,5 public function delete($id) { // 把1替换掉不允许删除ID为1的角色 在前面分别加了 , 号 ...
- 登录shell与非登录shell读取文件过程
登录shell与非登录shell读取文件过程登录:/etc/profile→/etc/profile.d/*.sh ~/.bash_profile非登录:~/.bash_profile→ ...
- 计算CPU利用率
一般来说对于需要大量cpu计算的进程,当前端压力越大时,CPU利用率越高.但对于I/O网络密集型的进程,即使请求很多,服务器的CPU也不一定很到,这时的服务瓶颈一般是在磁盘的I/O上.比较常见的就是, ...
- Lumen开发:Lumen的异常处理机制
版权声明:本文为博主原创文章,未经博主允许不得转载. Lumen的核心类Application引用了专门用于异常处理的RegistersExceptionHandlers, class Applica ...
- DP(正解完全背包+容斥)
DP Time Limit:10000MS Memory Limit:165888KB 64bit IO Format:%lld & %llu Submit Status De ...
- IIS架构介绍
IIS7及以上版本提供的请求-处理架构包括以下内容: Windows Process Activation Service(WAS)可以让站点支持更多协议,不仅仅是HTTP和HTTPS 可以通过增加或 ...
- js城市联动选择器
<html> <head> <META charset="utf8"> <script type="text/javascrip ...
- python基础-第五篇-5.1冒泡排序
几个月过去了,小白逐渐对公司的后端服务熟悉了,不过这天小白又接到一封神秘邮件,是景女神发来的:公司急需一批对语言算法有些了解的优秀员工,鉴于你在公司的表现很不错,现在给到你一个培训机会,请速到开发部报 ...
- unix网络编程笔记(二)
第四章笔记 1. 基本Tcpclient/server程序的套接字函数 2. socket函数: int socket(int family,int type,int protocol); (1)so ...
- 6.让ORM映射执行的时候打印SQL语句
配置Django日志:\hello_django\hello_django\settings.py 文件中的 LOGGING 加入如下配置: LOGGING = { 'version': 1, 'di ...