http://codeforces.com/contest/1029/problem/C

You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.

For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5](length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).

Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1)segments has the maximal possible length.

Input

The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.

Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.

Output

Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.

Examples
input

Copy
4
1 3
2 6
0 4
3 3
output

Copy
1
input

Copy
5
2 6
1 3
0 4
1 20
0 4
output

Copy
2
input

Copy
3
4 5
1 2
9 20
output

Copy
0
input

Copy
2
3 10
1 5
output

Copy
7

代码:

#include <bits/stdc++.h>
using namespace std; #define inf 0x3f3f3f3f
const int maxn = 300010 + 10;
int N; struct Node {
int l;
int r;
}S[maxn], Q[maxn], A[maxn]; int main() {
scanf("%d", &N);
S[0].r = inf, S[0].l = -inf;
for(int i = 1; i <= N; i ++) {
scanf("%d%d", &A[i].l, &A[i].r);
S[i].l = max(S[i - 1].l, A[i].l);
S[i].r = min(S[i - 1].r, A[i].r);
} Q[N + 1].r = inf, Q[N + 1].l = -inf;
for(int i = N; i >= 1; i --) {
Q[i].l = max(A[i].l, Q[i + 1].l);
Q[i].r = min(A[i].r, Q[i + 1].r);
} int ans = 0;
for(int i = 1; i <= N; i ++) {
ans = max(ans, (min(Q[i + 1].r, S[i - 1].r) - max(Q[i + 1].l, S[i - 1].l)));
}
printf("%d\n", ans);
return 0;
}

  

CodeForces C. Maximal Intersection的更多相关文章

  1. Codeforces Round #506 (Div. 3) C. Maximal Intersection

    C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

  2. CF1029C Maximal Intersection 暴力枚举

    Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input standar ...

  3. Codeforces | CF1029C 【Maximal Intersection】

    论Div3出这样巨水的送分题竟然还没多少人AC(虽说当时我也没A...其实我A了D...逃) 这个题其实一点都不麻烦,排序都可以免掉(如果用\(priority \_ queue\)的话) 先考虑不删 ...

  4. codeforces 803C Maximal GCD(GCD数学)

    Maximal GCD 题目链接:http://codeforces.com/contest/803/problem/C 题目大意: 给你n,k(1<=n,k<=1e10). 要你输出k个 ...

  5. Codeforces 803C. Maximal GCD 二分

    C. Maximal GCD time limit per test: 1 second memory limit per test: 256 megabytes input: standard in ...

  6. Codeforces 340B - Maximal Area Quadrilateral (计算几何)

    Codeforces Round #198 (Div. 2) 题目链接:Maximal Area Quadrilateral Iahub has drawn a set of \(n\) points ...

  7. F - Maximal Intersection --------暴力求解题

    You are given n segments on a number line; each endpoint of every segment has integer coordinates. S ...

  8. Codeforces 803C. Maximal GCD

    题目链接:http://codeforces.com/contest/803/problem/C 中了若干trick之后才过... k个数的严格递增序列最小权值和就是${n*(n+1)/2}$,枚举这 ...

  9. 【数学】codeforces C. Maximal GCD

    http://codeforces.com/contest/803/problem/C [题意] 给定两个数n,k(1 ≤ n, k ≤ 10^10) 要你输出k个数,满足以下条件: ①这k个数之和等 ...

随机推荐

  1. 【PC-x86-x64】JDK 32bit与64bit的区别及x64 PC的发展历程【转】

    一次偶然分析的机会: 在进行Minecraft也就是所谓的我的世界游戏的时候,在对局域网进行开放的时候,我的是64bit的JDK,而我同学的是32bit的JDK,所以在进行局域网链接的时候就会出现In ...

  2. shell编程中的vim命令说明

    vim命令模式:  1.一般命令模式 2.编辑模式 3.底行命令行命令模式 一般命令模式 直接用字符操作编辑模式 可以写文档(跟txt有点像)底行命令模式 先按'ESC',在按下“:”,之后在输出命令 ...

  3. JT796、JT1077部标平台检测报名须知

    检测报名须知 申请道路运输车辆卫星定位系统平台标准符合性检测时,请先将1检测意向单(只针对企业监控平台).2符合性检测申请材料(基本材料包括:申请函.授权人身份证复印件.检测登记表.运输企业信息表.平 ...

  4. 通过ip地址访问同一局域网下已经启动的angular项目

    通常tomcat启动的项目同一局域网下我们都可以访问.angular启动的前台项目别人怎么访问,一直不懂,后来知道启动命令加个参数就行了 首先查看本机ip 第二步,启动命令里加上--host 本机ip ...

  5. C编程经验总结5(剧终)

    Prolog是AI编程语言 Git(分布式)  svn(集中式)   commit(委托,犯罪) patch补丁)  merge(融入) repository(仓库) Ctrl+s(保存)     r ...

  6. ReactiveCocoa实战: 模仿 "花瓣",重写 LeanCloud Rest Api的iOS REST Client.

    这一次我们将要讨论的是移动开发中比较重要的一环--网络请求的封装.鉴于个人经验有限,本文将在一定程度上参考 基于AFNetworking2.0和ReactiveCocoa2.1的iOS REST Cl ...

  7. runtime - 消息机制

    Xcode中使用runtime代码时,建议先做下配置: 使用runtime代码时会有适当的提醒. OC方法调用的本质是消息转发,消息机制的本质 创建一个Person类,添加方法 - (void)eat ...

  8. jquery 筛选元素 (3)

    .addBack() 添加堆栈中元素集合到当前集合中,一个选择性的过滤选择器. .addBack([selector]) selector 一个字符串,其中包括一个选择器表达式,匹配当前元素集合,不包 ...

  9. LeetCode977. 有序数组的平方

    问题:977. 有序数组的平方 给定一个按非递减顺序排序的整数数组 A,返回每个数字的平方组成的新数组,要求也按非递减顺序排序. 示例 1: 输入:[-4,-1,0,3,10] 输出:[0,1,9,1 ...

  10. java多线程批量读取文件(七)

    新公司入职一个多月了,至今没有事情可以做,十来个新同事都一样抓狂,所以大家都自己学习一些新东西,我最近在看zookeeper,感觉蛮不错的,和微服务的zuul以及eureka功能类似,只是代码复杂了一 ...