kafka的并行度与JStorm性能优化
kafka的并行度与JStorm性能优化
> Consumers
Messaging traditionally has two models: queuing and publish-subscribe. In a queue, a pool of consumers may read from a server and each message goes to one of them; in publish-subscribe the message is broadcast to all consumers. Kafka offers a single consumer
abstraction that generalizes both of these—the consumer group.
Consumers label themselves with a consumer group name, and each message published to a topic is delivered to one consumer instance within each subscribing consumer group. Consumer instances can be in separate processes or on separate machines.
If all the consumer instances have the same consumer group, then this works just like a traditional queue balancing load over the consumers.
If all the consumer instances have different consumer groups, then this works like publish-subscribe and all messages are broadcast to all consumers.
More commonly, however, we have found that topics have a small number of consumer groups, one for each "logical subscriber". Each group is composed of many consumer instances for scalability and fault tolerance. This is nothing more than publish-subscribe semantics
where the subscriber is cluster of consumers instead of a single process.
> Kafka has stronger ordering guarantees than a traditional messaging system, too.....
> Kafka does it better. By having a notion of parallelism—the partition—within the topics, Kafka is able to provide both ordering guarantees and load balancing over a pool of consumer processes. This is achieved by assigning the partitions in the topic to the
consumers in the consumer group so that each partition is consumed by exactly one consumer in the group. By doing this we ensure that the consumer is the only reader of that partition and consumes the data in order. Since there are many partitions this still
balances the load over many consumer instances. Note however that there cannot be more consumer instances than partitions.
Kafka only provides a total order over messages within a partition, not between different partitions in a topic. Per-partition ordering combined with the ability to partition data by key is sufficient for most applications. However, if you require a total order
over messages this can be achieved with a topic that has only one partition, though this will mean only one consumer process.
我们经经常使用的是公布-订阅方式。
消费者端能够组成一个组。共同消费一个topic。kafka 中topic的消息每个消息仅仅能被消费者组中的一个消费者消费,能够把消费者组的消费者个数当作线程数目,多个线程消费某一topic消息。
消费者实例能够在不同机器上的不同进程内。
假设某一topic的全部消费者实例都有同样的消费组名。它们的工作方式类似与传统的队列。
假设某一topic的全部消费者实例有各自不同的消费组名。它们的工作方式类似与公布-订阅,全部的消息广播给 全部消费者。
为什么採用消费组的形式呢,文档也给出了答案:for scalability and fault tolerance。
kafka的并行度---分区(the partition),
文档指出:某一topic的消息的每一个分区(partition)被一个消费组中的一个消费者消费,能够确保消费者消费的顺序。
Note however that there cannot be more consumer instances than partitions.不要使得消费组中消费者实例数目多于分区数目,相等最好。
JStorm中。spout是拓扑图中的入口点,假设这个入口流量小了,整个拓扑中的瓶颈那应该是入口了。所以,我们在JStorm中,kafkaSpout要提高并发度。设置kafkaSpout实例数目,设置的实例数目要和kafka分区的数目相等,我们随时调整分区数目及kafkaSpout实例数目,观察性能瓶颈存在否。
kafka的并行度与JStorm性能优化的更多相关文章
- 漫游Kafka设计篇之性能优化
Kafka在提高效率方面做了很大努力.Kafka的一个主要使用场景是处理网站活动日志,吞吐量是非常大的,每个页面都会产生好多次写操作.读方面,假设每个消息只被消费一次,读的量的也是很大的,Kafka也 ...
- apache kafka系列之性能优化架构分析
apache kafka中国社区QQ群:162272557 Apache kafka性能优化架构分析 应用程序优化:数据压缩 watermark/2/text/aHR0cDovL2Jsb2cuY3Nk ...
- Spark性能优化(1)——序列化、内存、并行度、数据存储格式、Shuffle
序列化 背景: 在以下过程中,需要对数据进行序列化: shuffling data时需要通过网络传输数据 RDD序列化到磁盘时 性能优化点: Spark默认的序列化类型是Java序列化.Java序列化 ...
- 漫游Kafka设计篇之性能优化(7)
Kafka在提高效率方面做了很大努力.Kafka的一个主要使用场景是处理网站活动日志,吞吐量是非常大的,每个页面都会产生好多次写操作.读方面,假设每个消息只被消费一次,读的量的也是很大的,Kafka也 ...
- 一文告诉你,Kafka在性能优化方面做了哪些举措!
很多粉丝私信问我Kafka在性能优化方面做了哪些举措,对于相关问题的答案其实我早就写过了,就是没有系统的整理一篇,最近思考着花点时间来整理一下,下次再有粉丝问我相关的问题我就可以潇洒的甩个链接了.这个 ...
- 5种kafka消费端性能优化方法
摘要:带你了解基于FusionInsight HD&MRS的5种kafka消费端性能优化方法. 本文分享自华为云社区<FusionInsight HD&MRSkafka消费端性能 ...
- Storm 性能优化
目录 场景假设 调优步骤和方法 Storm 的部分特性 Storm 并行度 Storm 消息机制 Storm UI 解析 性能优化 场景假设 在介绍 Storm 的性能调优方法之前,假设一个场景:项目 ...
- storm性能优化
Storm 性能优化 目录 场景假设 调优步骤和方法 Storm 的部分特性 Storm 并行度 Storm 消息机制 Storm UI 解析 性能优化 场景假设 在介绍 Storm 的性能调优方法之 ...
- Storm: 性能优化 (转载)
Storm 性能优化 原文地址:http://www.jianshu.com/p/f645eb7944b0 目录 场景假设 调优步骤和方法 Storm 的部分特性 Storm 并行度 Storm 消 ...
随机推荐
- vs2012 webservice创建
第一步:打开VS2012,新建空项目,注意选择.NET Framework的版本.这里我选择的是.NET Framework 4 新建好项目后,在项目中添加一个WebService项 打开这个文件,我 ...
- Android - toolbar navigation 样式
1.修改title 边距 修改边距使用系统的app属性来引入使用,即: xmlns:app="http://schemas.android.com/apk/res-auto" 1 ...
- [置顶]
kubernetes资源类型--持久化存储Persistent Volume和Persistent Volume Claim
概念 存储管理跟计算管理是两个不同的问题.理解每个存储系统是一件复杂的事情,特别是对于普通用户来说,有时并不需要关心各种存储实现,只希望能够安全可靠地存储数据. 为了简化对存储调度,K8S对存储的供应 ...
- 管理 node 版本,选择 nvm 还是 n?
来源:http://taobaofed.org/blog/2015/11/17/nvm-or-n/ 引子 我本机安装着 nvm,而 node 本来一直运行在 0.x 的老版本上.后来为了跑 ES6,我 ...
- 通过Linux定时任务实现定时轮询数据库及发送Http请求
通过Linux定时任务实现定时轮询数据库及发送Http请求 概述 有时需要临时增加一个定时任务(需要根据数据库查询结果然后发送HTTP请求),如果在项目中额外增加(Java+Spring+Quartz ...
- 【温故知新】—— React/Redux/React-router4基础知识&独立团Demo
前言:React专注View层,一切皆组件:全部使用ES6语法,最新版本为React16. Redux是专注于状态管理的库,和react解耦:单一状态,单向数据流.[独立团github地址] 一.Re ...
- 2017.3.31 spring mvc教程(七)多视图控制器
学习的博客:http://elf8848.iteye.com/blog/875830/ 我项目中所用的版本:4.2.0.博客的时间比较早,11年的,学习的是Spring3 MVC.不知道版本上有没有变 ...
- 编译和安装在Windows上橡胶树 (Compiling and Installing Yate on Windows)
编译和安装在Windows上橡胶树 有两种方法来安装橡胶树下窗口: 下载并安装橡胶树 下载后页面设置. 另一个选择是下载橡胶树从SVN并编译它. 内容 ( 隐藏] 1 安装使用设置橡胶树 2 ...
- Angular 学习笔记——service &constant
<!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...
- Oracle 左外连接的一些測试
为了更加深入左外连接,我们做一些測试,外连接的写法有几种形式,我们能够通过10053跟踪到终于SQL转换的形式. --初始化数据 create table A ( id number, age ...