【CodeM初赛B轮】F

题目大意:有n个景点,m条无向边,经过每条边的时间需要的时间是li,在第i个景点游览花费的时间是ti,游览完第i个景点可以获得的满意度是hi。你的总时间为k,起初你等概率的选择游览一个景点,然后每次等概率的前往一个相邻的景点游览,当你剩余时间不够游览一个相邻的景点时就结束游览。问所获得的满意度的期望值。(本题强行询问两次~)

n<=100,总时间<=500

题解:显然的期望DP啊,不过本题的细节比较多,我这里只说一些细节吧~

用f[i][j]表示游览完景点i,还剩时间j,所获得的期望满意度。显然f[i][j]可以由相邻的景点转移而来,不过可没那么简单~

你还需要维护p[i][j]表示游览完景点i,还剩时间j,这种情况发生的概率;d[i][j]表示游览完景点i,还剩时间j,此时景点i的出度(显然,一个点的出度在不同时间是不一样的。)现在你才能进行状态转移。

$f[i][k]=\sum {f[j][k+l[i][j]+t[i]]\over d[j][k+l[i][j]+t[i]]}+h[i]*p[i][k]$

答案就是所有出度为0的状态的f之和(显然它们的p之和=1,如果你的程序正确的话~)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
typedef long double ld;
int n,m,T;
int map[110][110],t[110],h1[110],h2[110],d[110][500];
ld ans,ans1,ans2,p[110][500],f1[110][500],f2[110][500];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd(),T=rd();
int i,j,k,a,b,c,flag;
for(i=1;i<=n;i++) t[i]=rd(),h1[i]=rd(),h2[i]=rd();
for(i=1;i<=m;i++) a=rd(),b=rd(),map[a][b]=map[b][a]=rd();
for(i=1;i<=n;i++) p[i][T-t[i]]=1.0/n;
for(k=T-1;k>=0;k--)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++) if(map[i][j]&&k>=map[i][j]+t[j]) d[i][k]++;
for(j=1;j<=n;j++)
{
if(!map[i][j]) continue;
c=k+map[i][j]+t[i];
if(c>=T) continue;
p[i][k]+=p[j][c]/d[j][c];
f1[i][k]+=f1[j][c]/d[j][c];
f2[i][k]+=f2[j][c]/d[j][c];
}
f1[i][k]+=p[i][k]*h1[i];
f2[i][k]+=p[i][k]*h2[i];
if(!d[i][k]) ans+=p[i][k],ans1+=f1[i][k],ans2+=f2[i][k];
}
}
printf("%.5lf %.5lf",(double)ans1,(double)ans2);
return 0;
}

【CodeM初赛B轮】F 期望DP的更多相关文章

  1. 【CodeM初赛B轮】A 贪心

    [CodeM初赛B轮]A 题目大意:给你一棵树,起初所有点都是白色的,你每次都能选择一个白点i,将这个点i到根路径上的所有到i的距离<k[i]的点都染成黑色(根和i也算,已经被染成黑色的点还是黑 ...

  2. loj #6191. 「美团 CodeM 复赛」配对游戏 期望dp

    题意:有一个栈,随机插入 $n$ 次 $0$/$1$ 如果栈顶是 $1$,然后插入 $0$,则将这两个元素都弹出,否则,插入栈顶. 求:$n$ 次操作后栈中期望的元素个数. 我们发现,按照上述弹栈方式 ...

  3. CodeM初赛B轮

    做什么啊,我这么菜,应该弃赛的 [编程|1500分] 子串 时间限制:3秒空间限制:32768K 题目描述 给出一个正整数n,我们把1..n在k进制下的表示连起来记为s(n,k),例如s(16,16) ...

  4. 美团CodeM初赛B轮 合并字符串的价值 (线段树,分类讨论)

    输入两个字符串a和b,合并成一个串c,属于a或b的字符在c中顺序保持不变.如"ACG"和"UT"可以被组合成"AUCTG"或"AC ...

  5. 【CodeM初赛A轮】D 分解质因数+暴力

    题目描述树链是指树里的一条路径.美团外卖的形象代言人袋鼠先生最近在研究一个特殊的最长树链问题.现在树中的每个点都有一个正整数值,他想在树中找出最长的树链,使得这条树链上所有对应点的值的最大公约数大于1 ...

  6. 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP

    [题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...

  7. 美团2018年CodeM大赛-初赛B轮 B 配送(最短路)

    美团2018年CodeM大赛-初赛B轮 B 配送 题意 题解 对于每个任务,只要从上个任务的终点出发即可. 时间.地点很少,可以算出每个地点-时间的最小花费. 以题目描述的起点终点起始结束时间建图,很 ...

  8. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  9. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

随机推荐

  1. html 打印代码,支持翻页

    ylbtech_html_print html打印代码,支持翻页 <html> <head> <meta name=vs_targetSchema content=&qu ...

  2. 输入法不能使用ctrl+shift进行切换的问题

    第一种情况就是,你的输入法只有一种(而且这种输入法并不是“中文(简体) 微软拼音输入法”). 如果是只有一种输入法的话,是无法进行切换的,如果你是想要把输入法切换到无输入法状态,那么你可以通过设置任务 ...

  3. ElasticSearch5.5.2常用命令

    1.启动 转到elasticsearch-5.5.2\bin目录: 打开命令行输入:elasticsearch 2.ELasticsearch集群已经启动并且正常运行 curl http://127. ...

  4. 2017.7.21 Linux中ELK服务后台运行方式

    通过 2017.7.18 linux下ELK环境搭建 搭建好服务于之后,一旦按下Ctrl+C或者退出登录会话,服务的进程就随之停止了.要长期在后台运行此程序,有几种方式: 1 nohup 输入Ctrl ...

  5. Win7 无法将快捷方式从任务栏移除怎么办

    不知道是什么修改了系统的属性了.在网上找到了这个方法解决了:一:为了解决这个问题,你可以尝试下面的方法:    把以下命令分别输入到开始-运行中    1.cmd /k reg add "H ...

  6. python raise assert

    class MyException(Exception): def __init__(self,error_msg): self.error_msg=error_msg def __str__(sel ...

  7. JDBC性能优化方案

       最近用到了利用JDBC查询Oracle数据库.可是查询效率不尽人意.研究了一下JDBC方面能够优化的地方,在这里跟大家分享一下.   1.设置最优的预取值         defaultRowP ...

  8. 【SpringMVC学习10】SpringMVC对RESTfull的支持

    RESTful架构,就是目前流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展方便,所以正得到越来越多网站的采用.RESTful架构对url进行规范,写RESTful格式的url是什么样子 ...

  9. rational rose画UML图

    原文见:http://blog.csdn.net/cjr15233661143/article/details/8532997 UML是一种建模语言,是系统建模的标准.我们之所以建模是因为大规模的系统 ...

  10. Java IO、网络编程、NIO、Netty、Hessian、RPC、RMI的学习路线

    好久没看Java IO这块的内容,感觉都快忘得差不多了.平成编程也没有设计到太多的Java基础知识,所以这里希望可以抽点时间回顾一下,让艾宾浩斯记忆曲线不要下降的太快. 回顾这个主要还是以总结为主,能 ...