在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢;或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常。总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行。因此我们必须对Spark作业的资源使用原理有一个清晰的认识,并知道在Spark作业运行过程中,有哪些资源参数是可以设置的,以及如何设置合适的参数值。

Spark作业基本运行原理

详细原理见上图。我们使用spark-submit提交一个Spark作业之后,这个作业就会启动一个对应的Driver进程。根据你使用的部署模式(deploy-mode)不同,Driver进程可能在本地启动,也可能在集群中某个工作节点上启动。Driver进程本身会根据我们设置的参数,占有一定数量的内存和CPU
core。而Driver进程要做的第一件事情,就是向集群管理器(可以是Spark
Standalone集群,也可以是其他的资源管理集群,美团•大众点评使用的是YARN作为资源管理集群)申请运行Spark作业需要使用的资源,这里的资源指的就是Executor进程。YARN集群管理器会根据我们为Spark作业设置的资源参数,在各个工作节点上,启动一定数量的Executor进程,每个Executor进程都占有一定数量的内存和CPU
core。

  在申请到了作业执行所需的资源之后,Driver进程就会开始调度和执行我们编写的作业代码了。Driver进程会将我们编写的Spark作业代码分拆为多个stage,每个stage执行一部分代码片段,并为每个stage创建一批task,然后将这些task分配到各个Executor进程中执行。task是最小的计算单元,负责执行一模一样的计算逻辑(也就是我们自己编写的某个代码片段),只是每个task处理的数据不同而已。一个stage的所有task都执行完毕之后,会在各个节点本地的磁盘文件中写入计算中间结果,然后Driver就会调度运行下一个stage。下一个stage的task的输入数据就是上一个stage输出的中间结果。如此循环往复,直到将我们自己编写的代码逻辑全部执行完,并且计算完所有的数据,得到我们想要的结果为止。

  Spark是根据shuffle类算子来进行stage的划分。如果我们的代码中执行了某个shuffle类算子(比如reduceByKey、join等),那么就会在该算子处,划分出一个stage界限来。可以大致理解为,shuffle算子执行之前的代码会被划分为一个stage,shuffle算子执行以及之后的代码会被划分为下一个stage。因此一个stage刚开始执行的时候,它的每个task可能都会从上一个stage的task所在的节点,去通过网络传输拉取需要自己处理的所有key,然后对拉取到的所有相同的key使用我们自己编写的算子函数执行聚合操作(比如reduceByKey()算子接收的函数)。这个过程就是shuffle。

  当我们在代码中执行了cache/persist等持久化操作时,根据我们选择的持久化级别的不同,每个task计算出来的数据也会保存到Executor进程的内存或者所在节点的磁盘文件中。

  因此Executor的内存主要分为三块:第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;第三块是让RDD持久化时使用,默认占Executor总内存的60%。

  task的执行速度是跟每个Executor进程的CPU core数量有直接关系的。一个CPU
core同一时间只能执行一个线程。而每个Executor进程上分配到的多个task,都是以每个task一条线程的方式,多线程并发运行的。如果CPU
core数量比较充足,而且分配到的task数量比较合理,那么通常来说,可以比较快速和高效地执行完这些task线程。

  以上就是Spark作业的基本运行原理的说明,大家可以结合上图来理解。理解作业基本原理,是我们进行资源参数调优的基本前提。

资源参数调优
  了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了。所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能。以下参数就是Spark中主要的资源参数,每个参数都对应着作业运行原理中的某个部分,我们同时也给出了一个调优的参考值。

num-executors

  参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。

  参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。

executor-memory

  参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。

  参数调优建议:每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,就代表了你的Spark作业申请到的总内存量(也就是所有Executor进程的内存总和),这个量是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的总内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。

executor-cores

  参数说明:该参数用于设置每个Executor进程的CPU
core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU
core同一时间只能执行一个task线程,因此每个Executor进程的CPU
core数量越多,越能够快速地执行完分配给自己的所有task线程。

  参数调优建议:Executor的CPU
core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU
core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU
core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU
core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。

driver-memory

  参数说明:该参数用于设置Driver进程的内存。

  参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

spark.default.parallelism

  参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。

  参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS

block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors
* executor-cores的2~3倍较为合适,比如Executor的总CPU
core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

spark.storage.memoryFraction

  参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor
60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。

  参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark
web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

spark.shuffle.memoryFraction

  参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。

  参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
资源参数的调优,没有一个固定的值,需要同学们根据自己的实际情况(包括Spark作业中的shuffle操作数量、RDD持久化操作数量以及spark web ui中显示的作业gc情况),同时参考本篇文章中给出的原理以及调优建议,合理地设置上述参数。

资源参数参考示例
以下是一份spark-submit命令的示例,大家可以参考一下,并根据自己的实际情况进行调节:

./bin/spark-submit \
--master yarn-cluster \
--num-executors \
--executor-memory 6G \
--executor-cores \
--driver-memory 1G \
--conf spark.default.parallelism= \
--conf spark.storage.memoryFraction=0.5 \
--conf spark.shuffle.memoryFraction=0.3 \

spark性能调优:资源优化的更多相关文章

  1. Spark性能调优之代码方面的优化

    Spark性能调优之代码方面的优化 1.避免创建重复的RDD     对性能没有问题,但会造成代码混乱   2.尽可能复用同一个RDD,减少产生RDD的个数   3.对多次使用的RDD进行持久化(ca ...

  2. [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析

    本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

  3. spark 性能调优(一) 性能调优的本质、spark资源使用原理、调优要点分析

    转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论 ...

  4. Spark性能调优之资源分配

    Spark性能调优之资源分配    性能优化王道就是给更多资源!机器更多了,CPU更多了,内存更多了,性能和速度上的提升,是显而易见的.基本上,在一定范围之内,增加资源与性能的提升,是成正比的:写完了 ...

  5. Spark性能调优之Shuffle调优

    Spark性能调优之Shuffle调优    • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...

  6. Spark性能调优之合理设置并行度

    Spark性能调优之合理设置并行度 1.Spark的并行度指的是什么?     spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度!     当分配 ...

  7. Spark性能调优之解决数据倾斜

    Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据    • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...

  8. Spark性能调优

    Spark性能优化指南——基础篇 https://tech.meituan.com/spark-tuning-basic.html Spark性能优化指南——高级篇 https://tech.meit ...

  9. sql server 性能调优 资源等待之网络I/O

    原文:sql server 性能调优 资源等待之网络I/O 一.概述 与网络I/O相关的等待的主要是ASYNC_NETWORK_IO,是指当sql server返回数据结果集给客户端的时候,会先将结果 ...

  10. Spark性能调优:广播大变量broadcast

    Spark性能调优:广播大变量broadcast 原文链接:https://blog.csdn.net/leen0304/article/details/78720838 概要 有时在开发过程中,会遇 ...

随机推荐

  1. Inno Setup命令行安装卸载参数

    安装命令行参数安装程序接受可选的命令行参数.这些对于系统管理员以及其它程序调用安装程序时有用./SP- 在安装开始时禁用“这将安装... 你想继续吗?”的提示,当然,如果 [Setup] 段的指令 D ...

  2. [HDU 4787] GRE Words Revenge (AC自动机)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4787 题目大意: 给你若干个单词,查询一篇文章里出现的单词数.. 就是被我水过去的...暴力重建AC自 ...

  3. 点评App wiki-git标准实践

    fetch与pull fetch = pull + merge fetch -p,用于将清理工作同步到本地repository rebase-衍合 merge与rebase是合并的两种方法(上为mer ...

  4. The Ninth Hunan Collegiate Programming Contest (2013) Problem L

    Problem L Last Blood In many programming contests, special prizes are given to teams who solved a pa ...

  5. DFS与BFS

    顾名思义,DFS就是一直在一个方向搜索,当这一方向不可以时退回该点,换下一方向: 而BFS一开始就是向四面八方搜索,把符合条件的点存入队列中,当前一个点都搜索完毕时,再从队列顶中取出点,再向四面八方搜 ...

  6. Android JNI学习之javah命令的正确使用(找了好半天才找到的,汉,网上好多说法都没用)

    按照网上抄来的javah用法一般出错,今天查了一下午在一篇文章(http://www.ibm.com/developerworks/cn/java/j-jtctips/part6/index2.htm ...

  7. 性能测试脚本新玩法---fiddler&&Jmeter

    飞测说:最近接触移动项目,测试app,需要做移动app的性能测试,想通过代理来录制,但是jmeter的代理录制效果真心不是很好,自己一个个请求来写代码,太浪时间了,那么有没有其他的办法呢? 我们都知道 ...

  8. 刻意练习,逃离舒适区——怎么样成为一个高手[罗辑思维]No.183_知识笔记

    2016/10/30 14:31:32   一.对事物的见解分为两类:         1.评论性的见解               说的内容都是对的,符合常理的,但是却是不解决问题的.       ...

  9. 为网站加入Drupal星球制作RSS订阅源

    目前中文 Drupal 星球的版块还未成立,但大家的积极性挺高,不少站长都已经调整好自己的网站,生成了可供Drupal Planet 使用的RSS订阅源. 如果你也想让网站做好准备,可以不必再花上不少 ...

  10. 如何让 Drupal 使用 Wordpress 形式的编辑代码?

    如果你曾有过将 Wordpress 网站迁移到 Drupal 的经验,很可能客户会问的第一件事就是如何为 Drupal 添加编辑代码. Wordpress 中的 Shortcodes 插件让使用者可以 ...