tsne降维可视化
Python代码:准备训练样本的数据和标签:train_X4000.txt、train_y4000.txt 放于tsne.py当前目录.(具体t-SNE – Laurens van der Maaten http://lvdmaaten.github.io/tsne/,Python implementation),
tsne.py代码:(为了使得figure显示数据的标签,代码做了简单修改)
#!/usr/bin/env python
# -*- coding: utf-8 -*- #
# tsne.py
#
# Implementation of t-SNE in Python. The implementation was tested on Python 2.5.1, and it requires a working
# installation of NumPy. The implementation comes with an example on the MNIST dataset. In order to plot the
# results of this example, a working installation of matplotlib is required.
# The example can be run by executing: ipython tsne.py -pylab
#
#
# Created by Laurens van der Maaten on 20-12-08.
# Copyright (c) 2008 Tilburg University. All rights reserved. import numpy as Math
import pylab as Plot def Hbeta(D = Math.array([]), beta = 1.0):
"""Compute the perplexity and the P-row for a specific value of the precision of a Gaussian distribution.""" # Compute P-row and corresponding perplexity
P = Math.exp(-D.copy() * beta);
sumP = sum(P)+1e-6;
H = Math.log(sumP) + beta * Math.sum(D * P) / sumP;
P = P / sumP;
return H, P; def x2p(X = Math.array([]), tol = 1e-5, perplexity = 30.0):
"""Performs a binary search to get P-values in such a way that each conditional Gaussian has the same perplexity.""" # Initialize some variables
print "Computing pairwise distances..."
(n, d) = X.shape;
sum_X = Math.sum(Math.square(X), 1);
D = Math.add(Math.add(-2 * Math.dot(X, X.T), sum_X).T, sum_X);
P = Math.zeros((n, n));
beta = Math.ones((n, 1));
logU = Math.log(perplexity); # Loop over all datapoints
for i in range(n): # Print progress
if i % 500 == 0:
print "Computing P-values for point ", i, " of ", n, "..." # Compute the Gaussian kernel and entropy for the current precision
betamin = -Math.inf;
betamax = Math.inf;
Di = D[i, Math.concatenate((Math.r_[0:i], Math.r_[i+1:n]))];
(H, thisP) = Hbeta(Di, beta[i]); # Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while Math.abs(Hdiff) > tol and tries < 50: # If not, increase or decrease precision
if Hdiff > 0:
betamin = beta[i].copy();
if betamax == Math.inf or betamax == -Math.inf:
beta[i] = beta[i] * 2;
else:
beta[i] = (beta[i] + betamax) / 2;
else:
betamax = beta[i].copy();
if betamin == Math.inf or betamin == -Math.inf:
beta[i] = beta[i] / 2;
else:
beta[i] = (beta[i] + betamin) / 2; # Recompute the values
(H, thisP) = Hbeta(Di, beta[i]);
Hdiff = H - logU;
tries = tries + 1; # Set the final row of P
P[i, Math.concatenate((Math.r_[0:i], Math.r_[i+1:n]))] = thisP; # Return final P-matrix
print "Mean value of sigma: ", Math.mean(Math.sqrt(1 / beta))
return P; def pca(X = Math.array([]), no_dims = 50):
"""Runs PCA on the NxD array X in order to reduce its dimensionality to no_dims dimensions.""" print "Preprocessing the data using PCA..."
(n, d) = X.shape;
X = X - Math.tile(Math.mean(X, 0), (n, 1));
(l, M) = Math.linalg.eig(Math.dot(X.T, X));
Y = Math.dot(X, M[:,0:no_dims]);
return Y; def tsne(X = Math.array([]), no_dims = 2, initial_dims = 50, perplexity = 30.0):
"""Runs t-SNE on the dataset in the NxD array X to reduce its dimensionality to no_dims dimensions.
The syntaxis of the function is Y = tsne.tsne(X, no_dims, perplexity), where X is an NxD NumPy array.""" # Check inputs
if X.dtype != "float64":
print "Error: array X should have type float64.";
return -1;
#if no_dims.__class__ != "": # doesn't work yet!
# print "Error: number of dimensions should be an integer.";
# return -1; # Initialize variables
X = pca(X, initial_dims).real;
(n, d) = X.shape;
max_iter = 1000
initial_momentum = 0.5;
final_momentum = 0.8;
eta = 500;
min_gain = 0.01;
Y = Math.random.randn(n, no_dims);
dY = Math.zeros((n, no_dims));
iY = Math.zeros((n, no_dims));
gains = Math.ones((n, no_dims)); # Compute P-values
P = x2p(X, 1e-5, perplexity);
P = P + Math.transpose(P);
P = P / (Math.sum(P));
P = P * 4; # early exaggeration
P = Math.maximum(P, 1e-12); # Run iterations
for iter in range(max_iter): # Compute pairwise affinities
sum_Y = Math.sum(Math.square(Y), 1);
num = 1 / (1 + Math.add(Math.add(-2 * Math.dot(Y, Y.T), sum_Y).T, sum_Y));
num[range(n), range(n)] = 0;
Q = num / Math.sum(num);
Q = Math.maximum(Q, 1e-12); # Compute gradient
PQ = P - Q;
for i in range(n):
dY[i,:] = Math.sum(Math.tile(PQ[:,i] * num[:,i], (no_dims, 1)).T * (Y[i,:] - Y), 0); # Perform the update
if iter < 20:
momentum = initial_momentum
else:
momentum = final_momentum
gains = (gains + 0.2) * ((dY > 0) != (iY > 0)) + (gains * 0.8) * ((dY > 0) == (iY > 0));
gains[gains < min_gain] = min_gain;
iY = momentum * iY - eta * (gains * dY);
Y = Y + iY;
Y = Y - Math.tile(Math.mean(Y, 0), (n, 1)); # Compute current value of cost function
if (iter + 1) % 10 == 0:
C = Math.sum(P * Math.log(P / Q));
print "Iteration ", (iter + 1), ": error is ", C # Stop lying about P-values
if iter == 100:
P = P / 4; # Return solution
return Y; if __name__ == "__main__":
print "Run Y = tsne.tsne(X, no_dims, perplexity) to perform t-SNE on your dataset."
print "Running example on 2,500 MNIST digits..."
X = Math.loadtxt("train_X4000.txt");
#X = X[:100]
labels = Math.loadtxt("train_y4000.txt");
#labels = labels[:100]
Y = tsne(X, 2, 38, 20.0);
fil = open('Y.txt','w')
for i in Y:
fil.write(str(i[0])+' '+str(i[1])+'\n')
fil.close()
colors=['b', 'c', 'y', 'm', 'r']
idx_1 = [i1 for i1 in range(len(labels)) if labels[i1]==1]
flg1=Plot.scatter(Y[idx_1,0], Y[idx_1,1], 20,color=colors[0],label='1');
idx_2= [i2 for i2 in range(len(labels)) if labels[i2]==2]
flg2=Plot.scatter(Y[idx_2,0], Y[idx_2,1], 20,color=colors[1], label='2');
idx_3= [i3 for i3 in range(len(labels)) if labels[i3]==3]
flg3=Plot.scatter(Y[idx_3,0], Y[idx_3,1], 20, color=colors[2],label='3');
idx_4= [i4 for i4 in range(len(labels)) if labels[i4]==4]
flg4=Plot.scatter(Y[idx_4,0], Y[idx_4,1], 20,color=colors[3], label='4');
idx_5= [i5 for i5 in range(len(labels)) if labels[i5]==5]
flg5=Plot.scatter(Y[idx_5,0], Y[idx_5,1], 20, color=colors[4],label='5');
# flg=Plot.scatter(Y[:,0], Y[:,1], 20,labels);
Plot.legend()
Plot.savefig('figure4000.pdf')
Plot.show()
tsne降维可视化的更多相关文章
- 使用t-SNE做降维可视化
最近在做一个深度学习分类项目,想看看训练集数据的分布情况,但由于数据本身维度接近100,不能直观的可视化展示,所以就对降维可视化做了一些粗略的了解以便能在低维空间中近似展示高维数据的分布情况,以下内容 ...
- 【Python代码】TSNE高维数据降维可视化工具 + python实现
目录 1.概述 1.1 什么是TSNE 1.2 TSNE原理 1.2.1入门的原理介绍 1.2.2进阶的原理介绍 1.2.2.1 高维距离表示 1.2.2.2 低维相似度表示 1.2.2.3 惩罚函数 ...
- 结合sklearn的可视化工具Yellowbrick:超参与行为的可视化带来更优秀的实现
https://blog.csdn.net/qq_34739497/article/details/80508262 Yellowbrick 是一套名为「Visualizers」的视觉诊断工具,它扩展 ...
- cs231n---卷积网络可视化,deepdream和风格迁移
本课介绍了近年来人们对理解卷积网络这个“黑盒子”所做的一些可视化工作,以及deepdream和风格迁移. 1 卷积网络可视化 1.1 可视化第一层的滤波器 我们把卷积网络的第一层滤波器权重进行可视化( ...
- Probabilistic PCA、Kernel PCA以及t-SNE
Probabilistic PCA 在之前的文章PCA与LDA介绍中介绍了PCA的基本原理,这一部分主要在此基础上进行扩展,在PCA中引入概率的元素,具体思路是对每个数据$\vec{x}_i$,假设$ ...
- 用scikit-learn研究局部线性嵌入(LLE)
在局部线性嵌入(LLE)原理总结中,我们对流形学习中的局部线性嵌入(LLE)算法做了原理总结.这里我们就对scikit-learn中流形学习的一些算法做一个介绍,并着重对其中LLE算法的使用方法做一个 ...
- ISOMAP
转载 https://blog.csdn.net/dark_scope/article/details/53229427# 维度打击,机器学习中的降维算法:ISOMAP & MDS 降维是机器 ...
- Python—kmeans算法学习笔记
一. 什么是聚类 聚类简单的说就是要把一个文档集合根据文档的相似性把文档分成若干类,但是究竟分成多少类,这个要取决于文档集合里文档自身的性质.下面这个图就是一个简单的例子,我们可以把不同的文档聚合 ...
- Self-organizing Maps及其改进算法Neural gas聚类在异常进程事件识别可行性初探
catalogue . SOM简介 . SOM模型在应用中的设计细节 . SOM功能分析 . Self-Organizing Maps with TensorFlow . SOM在异常进程事件中自动分 ...
随机推荐
- [HDOJ5934]Bomb(强连通分量,缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5934 题意:有n个炸弹,爆炸范围和点燃花费给你,如果一个爆炸那么它爆炸范围内的炸弹也会爆炸.问让所有炸 ...
- pupper基线加固
1. 概述 puppet是一个开源的软件自动化配置和部署工具,它使用简单且功能强大,正得到了越来越多地关注,现在很多大型IT公司均在使用puppet对集群中的软件进行管理和部署,如google利用p ...
- Web开发, 跳转时出现java.lang.ClassNotFoundException
发生这种状况一般都是由于类找不到,要么是web.xml没有配对位置,要么是类没有放好
- Codeforces Round #378 (Div. 2) D. Kostya the Sculptor map+pair
D. Kostya the Sculptor time limit per test 3 seconds memory limit per test 256 megabytes input stand ...
- nyoj 1058部分和问题(DFS)
部分和问题 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使它们的和恰好为K. 输入 首先, ...
- HttpServletRequest学习
package cn.request; import java.io.IOException; import java.io.PrintWriter; import java.io.Unsupport ...
- JCO事务管理
/* * 标准对账单过账 * @account 标准对账单号 * @year 年度 */ public List<String> doAccountStatmentPost(String ...
- Nexus4铃声目录
1. 我的铃声 是通过下面的命令 传到手机上面去的: “ adb push fringe_01_long.mp3 /sdcard/ZC/ adb push fringe_02_short.mp3 /s ...
- [转载] 跳表SkipList
原文: http://www.cnblogs.com/xuqiang/archive/2011/05/22/2053516.html leveldb中memtable的思想本质上是一个skiplist ...
- linux学习笔记2-命令总结3
文件搜索命令 1.文件搜索命令 find 2.其他文件搜索命令 grep - 在文件中搜索字串匹配的行并输出 locate - 在文件资料库中查找文件 whereis - 搜索命令所在目录及帮助文档路 ...