Strategic Game

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5034    Accepted Submission(s): 2297

Problem Description
Bob
enjoys playing computer games, especially strategic games, but
sometimes he cannot find the solution fast enough and then he is very
sad. Now he has the following problem. He must defend a medieval city,
the roads of which form a tree. He has to put the minimum number of
soldiers on the nodes so that they can observe all the edges. Can you
help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
or
node_identifier:(0)

The
node identifiers are integer numbers between 0 and n-1, for n nodes (0
< n <= 1500). Every edge appears only once in the input data.

For example for the tree:

the solution is one soldier ( at the node 1).

The
output should be printed on the standard output. For each given input
data set, print one integer number in a single line that gives the
result (the minimum number of soldiers). An example is given in the
following table:

 
Sample Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
 
Sample Output
1
2
 
Source
 
Recommend
 
代码:  这里是最少覆盖边,开始一直搞最小覆盖点,然后各种不得劲,.....后面看了以下提示,然后就明白了。但是改了之后有开始tie,没办法,只能最后用起了邻接表(我用 的是vector来替代的)  最小覆盖点 =顶点数- 最大匹配数  、  最小覆盖边= 等于(无向图)最大匹配/2;
 
代码:
 #include<cstring>
#include<cstdio>
#include<vector>
#include<iostream>
using namespace std;
const int maxn=;
vector<vector<int> >grid(maxn);
bool vis[maxn];
int savx[maxn];
int n;
int km(int x){
vector<int>::iterator it;
for(it=grid[x].begin();it<grid[x].end();it++){
if(!vis[*it]){
vis[*it]=;
if(savx[*it]==-||km(savx[*it])){
savx[*it]=x;
return ;
}
}
}
return ;
} int main(){
int ans=;
int a,b,c;
int km(int );
while(scanf("%d",&n)!=EOF){
ans=;
memset(savx,-,sizeof(savx));
for(int i=;i<n;i++)
grid[i].clear();
for(int i=;i<n;i++){
scanf("%d:(%d)",&a,&b);
for(int j=;j<b;j++){
scanf("%d",&c);
grid[a].push_back(c);
grid[c].push_back(a);
}
}
for(int i=;i<n;i++){
memset(vis,,sizeof(vis));
ans+=km(i);
}
printf("%d\n",ans/);
}
return ;
}

hdu---(1054)Strategic Game(最小覆盖边)的更多相关文章

  1. HDU - 1054 Strategic Game(二分图最小点覆盖/树形dp)

    d.一颗树,选最少的点覆盖所有边 s. 1.可以转成二分图的最小点覆盖来做.不过转换后要把匹配数除以2,这个待细看. 2.也可以用树形dp c.匈牙利算法(邻接表,用vector实现): /* 用ST ...

  2. HDU 1054 Strategic Game(最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:给你一棵树,选取树上最少的节点使得可以覆盖整棵树. 解题思路: 首先树肯定是二分图,因 ...

  3. HDU 1054:Strategic Game

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. HDU 1054 Strategic Game(树形DP)

    Problem Description Bob enjoys playing computer games, especially strategic games, but sometimes he ...

  5. HDU 1054 Strategic Game(树形DP)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. HDU 1054 Strategic Game 最小点覆盖

     最小点覆盖概念:选取最小的点数覆盖二分图中的所有边. 最小点覆盖 = 最大匹配数. 证明:首先假设我们求的最大匹配数为m,那么最小点覆盖必然 >= m,因为仅仅是这m条边就至少需要m个点.然后 ...

  7. hdu 1054 Strategic Game 经典树形DP

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. hdu 1054 Strategic Game (二分匹配)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 1054 Strategic Game(tree dp)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  10. HDU——1054 Strategic Game

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. 【Unity3D游戏开发】基础知识之Tags和Layers (三二)[转]

    Tags和Layers分别表示是Unity引擎里面的标签和层,他们都是用来对GameObject进行标识的属性,Tags常用于单个GameObject,Layers常用于一组的GameObject.添 ...

  2. 【转+自己研究】新姿势之Docker Remote API未授权访问漏洞分析和利用

    0x00 概述 最近提交了一些关于 docker remote api 未授权访问导致代码泄露.获取服务器root权限的漏洞,造成的影响都比较严重,比如 新姿势之获取果壳全站代码和多台机器root权限 ...

  3. Linux命令工具基础02 文件及目录管理

    文件及目录管理 文件管理不外乎文件或目录的创建.删除.查询.移动,有mkdir/rm/mv 文件查询是重点,用find来进行查询:find的参数丰富,也非常强大: 查看文件内容是个大的话题,文本的处理 ...

  4. loutsScript 常用代码

    1.FTSearch搜索: Set dc=db.Ftsearch("name",0) '0位置为最大的查询数,0为所有匹配的文件 FTSearch必须创建数据库索引 Set doc ...

  5. Android获取窗体信息的Util方法

    package com.wangyi.tools; import android.app.Activity; import android.util.DisplayMetrics; public cl ...

  6. Javascript设计模式之创建对象的灵活性

    传统的 /* Anim class */ var Anim = function () {}; Anim.prototype.start = function () { console.log(&qu ...

  7. wireshark使用教程

    Wireshark: https://www.wireshark.org/ 安装: apt-get install wireshark 教程: http://blog.csdn.net/leichel ...

  8. 如何查看与刷新DNS本地缓存

    如何查看与刷新DNS本地缓存 一.查看DNS本地缓存 在cmd窗口输入:ipconfig/displaydns 二.刷新DNS本地缓存 在cmd窗口输入:ipconfig/flushdns 之后输入: ...

  9. spring的初始化bean,销毁bean之前的操作详解

    我所知道的在spring初始化bean,销毁bean之前的操作有三种方式: 第一种:通过@PostConstruct 和 @PreDestroy 方法 实现初始化和销毁bean之前进行的操作 第二种是 ...

  10. shell远程执行命令

    ssh主要参数说明 -l 指定登入用户 -p 设置端口号 -f 后台运行,并推荐加上 -n 参数 -n 将标准输入重定向到 /dev/null,防止读取标准输入 -N 不执行远程命令,只做端口转发 - ...