Bezier曲线的原理 及 二次Bezier曲线的实现
原文地址:http://blog.csdn.net/jimi36/article/details/7792103
Bezier曲线的原理
Bezier曲线是应用于二维图形的曲线。曲线由顶点和控制点组成,通过改变控制点坐标可以改变曲线的形状。
一次Bezier曲线公式:
一次Bezier曲线是由P0至P1的连续点,描述的一条线段
二次Bezier曲线公式:
二次Bezier曲线是 P0至P1 的连续点Q0和P1至P2 的连续点Q1 组成的线段上的连续点B(t),描述一条抛物线。
三次Bezier曲线公式:
二次Bezier曲线的实现
- #ifndef CBEZIERCURVE_H_
- #define CBEZIERCURVE_H_
- #include <vector>
- class CBezierCurve
- {
- public:
- CBezierCurve();
- ~CBezierCurve();
- void SetCtrlPoint(POINT& stPt);
- bool CreateCurve();
- void Draw(CDC* pDC);
- private:
- // 主要算法,计算曲线各个点坐标
- void CalCurvePoint(float t, POINT& stPt);
- private:
- // 顶点和控制点数组
- std::vector<POINT> m_vecCtrlPt;
- // 曲线上各点坐标数组
- std::vector<POINT> m_vecCurvePt;
- };
- #endif
- #include <math.h>
- #include "BezierCurve.h"
- CBezierCurve::CBezierCurve()
- {
- }
- CBezierCurve::~CBezierCurve()
- {
- }
- void CBezierCurve::SetCtrlPoint(POINT& stPt)
- {
- m_vecCtrlPt.push_back(stPt);
- }
- void CBezierCurve::CreateCurve()
- {
- // 确保是二次曲线,2个顶点一个控制点
- assert(m_vecCtrlPt.size() == 3);
- // t的增量, 可以通过setp大小确定需要保存的曲线上点的个数
- float step = 0.01;
- for (float t = 0.0; t <= 1.0; t += step)
- {
- POINT stPt;
- CalCurvePoint(t, stPt);
- m_vecCurvePt.push_back(stPt);
- }
- }
- void CBezierCurve::Draw(CDC* pDC)
- {
- // 画出曲线上个点,若不连续可以用直线连接各点
- int nCount = m_vecCurvePt.size();
- for (int i = 0; i < nCount; ++i)
- {
- pDC->SetPixel(m_vecCurvePt[i], 0x000000);
- }
- }
- void CBezierCurve::CalCurvePoint(float t, POINT& stPt)
- {
- // 确保是二次曲线,2个顶点一个控制点
- assert(m_vecCtrlPt.size() == 3);
- // 计算曲线点坐标,此为2次算法,改变此处可以实现多次曲线
- float x = (float)m_vecCtrlPt[0].x * pow(1 - t, 2) +
- (float)m_vecCtrlPt[1].x * t * (1 - t) * 2 +
- (float)m_vecCtrlPt[2].x * pow(t, 2);
- float y = (float)m_vecCtrlPt[0].y * pow(1 - t, 2) +
- (float)m_vecCtrlPt[1].y * t * (1 - t) * 2 +
- (float)m_vecCtrlPt[2].y * pow(t, 2);
- stPt.x =x;
- stPt.y= y;
- }
Bezier曲线的原理 及 二次Bezier曲线的实现的更多相关文章
- Bezier贝塞尔曲线的原理、二次贝塞尔曲线的实现
Bezier曲线的原理 Bezier曲线是应用于二维图形的曲线.曲线由顶点和控制点组成,通过改变控制点坐标可以改变曲线的形状. 一次Bezier曲线公式: 一次Bezier曲线是由P0至P1的连续点, ...
- 贝塞尔曲线:原理、自定义贝塞尔曲线View、使用!!!
一.原理 转自:http://www.2cto.com/kf/201401/275838.html Android动画学习Demo(3) 沿着贝塞尔曲线移动的Property Animation Pr ...
- Android 利用二次贝塞尔曲线模仿购物车加入物品抛物线动画
Android 利用二次贝塞尔曲线模仿购物车加入物品抛物线动画 0.首先.先给出一张效果gif图. 1.贝塞尔曲线原理及相关公式參考:http://www.jianshu.com/p/c0d7ad79 ...
- Oracle 集群】ORACLE DATABASE 11G RAC 知识图文详细教程之ORACLE集群概念和原理(二)
ORACLE集群概念和原理(二) 概述:写下本文档的初衷和动力,来源于上篇的<oracle基本操作手册>.oracle基本操作手册是作者研一假期对oracle基础知识学习的汇总.然后形成体 ...
- canvas绘制二次贝塞尔曲线----演示二次贝塞尔四个参数的作用
canvas中绘制二次贝塞尔曲线的方法为ctx.quadraticCurveTo(x1,y1,x2,y2); 四个参数分别为两个控制点的坐标.开始点即当前canvas中目前的点,如果想从指定的点开始, ...
- 深入源码分析SpringMVC底层原理(二)
原文链接:深入源码分析SpringMVC底层原理(二) 文章目录 深入分析SpringMVC请求处理过程 1. DispatcherServlet处理请求 1.1 寻找Handler 1.2 没有找到 ...
- JVM 内部原理(二)— 基本概念之字节码
JVM 内部原理(二)- 基本概念之字节码 介绍 版本:Java SE 7 每位使用 Java 的程序员都知道 Java 字节码在 Java 运行时(JRE - Java Runtime Enviro ...
- 【转】Oracle 集群】ORACLE DATABASE 11G RAC 知识图文详细教程之ORACLE集群概念和原理(二)
阅读目录 目录 Oracle集群概念和原理 RAC概述 RAC 集成集群件管理 RAC 的体系结构 RAC 的结构组成和机制 RAC 后台进程 RAC 共享存储 RAC 数据库和单实例数据库的区别 ...
- 基于canvas二次贝塞尔曲线绘制鲜花
canvas中二次贝塞尔曲线参数说明: cp1x:控制点1横坐标 cp1y:控制点1纵坐标 x: 结束点1横坐标 y:结束点1纵坐标 cp2x:控制点2横坐标 cp2y:控制点2纵坐标 z:结束点2横 ...
随机推荐
- 《OD学hadoop》mac下使用VMware Fusion安装centos
一. NAT模式网络访问 (1)在linux中输入命令ifconfig查看网络信息 (2)在mac中输入命令ifconfig查看网络信息 lo0: flags=<UP,LOOPBACK,RUNN ...
- c#调用系统资源大集合-1
using System; using System.Collections.Generic; using System.Text; using System.Runtime.InteropServi ...
- Machine Learning for hackers读书笔记(四)排序:智能收件箱
#数据集来源http://spamassassin.apache.org/publiccorpus/ #加载数据 library(tm)library(ggplot2)data.path<-'F ...
- 【转】Qt数据库总结
转自:http://blog.chinaunix.net/uid-25201977-id-3014100.html #include <QtSql>QT += sql QSqlDataba ...
- 【C#学习笔记】图片像素操作
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 【英语】Bingo口语笔记(75) - 元音辅音的辨读
- SeuRain的归来
不知不觉二十载寒窗苦读要结束了,还没有到回顾过去的时候.马上进入研三了,现在要努力加油了.还记得曾经的那个在凌晨两点奋战的宇么?归来吧!
- ORACLE学习笔记 索引和约束
/*** 约束 ***/ * 如果某个约束只作用于单独的字段,即可以在字段级定义约束,也可以在表级定义约 束,但如果某个约束作用于多个字段, 必须在表级定义约束* 在定义约束时可以通过CONSTRA ...
- 剑指offer—第三章高质量代码(数值的整数次方)
高质量的代码:容错处理能力,规范性,完整性.尽量展示代码的可扩展型和可维护性. 容错处理能力:特别的输入和处理,异常,资源回收. 规范性:清晰的书写,清晰的布局,合理的命名. 完整性:功能测试,边界测 ...
- Linux共享内存(一)
inux系统编程我一直看 <GNU/LINUX编程指南>,只是讲的太简单了,通常是书和网络上的资料结合着来掌握才比较全面 .在掌握了书上的内容后,再来都其他资料 . 原文链接 http:/ ...