time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

The cinema theater hall in Sereja's city is n seats lined up in front of one large screen. There are slots for personal possessions to the left and to the right of each seat. Any two adjacent seats have exactly one shared slot. The figure below shows the arrangement of seats and slots for n = 4.

Today it's the premiere of a movie called "Dry Hard". The tickets for all the seats have been sold. There is a very strict controller at the entrance to the theater, so all n people will come into the hall one by one. As soon as a person enters a cinema hall, he immediately (momentarily) takes his seat and occupies all empty slots to the left and to the right from him. If there are no empty slots, the man gets really upset and leaves.

People are not very constant, so it's hard to predict the order in which the viewers will enter the hall. For some seats, Sereja knows the number of the viewer (his number in the entering queue of the viewers) that will come and take this seat. For others, it can be any order.

Being a programmer and a mathematician, Sereja wonders: how many ways are there for the people to enter the hall, such that nobody gets upset? As the number can be quite large, print it modulo 1000000007 (109 + 7).

Input

The first line contains integer n (1 ≤ n ≤ 105). The second line contains n integers, the i-th integer shows either the index of the person (index in the entering queue) with the ticket for the i-th seat or a 0, if his index is not known. It is guaranteed that all positive numbers in the second line are distinct.

You can assume that the index of the person who enters the cinema hall is a unique integer from 1 to n. The person who has index 1 comes first to the hall, the person who has index 2 comes second and so on.

Output

In a single line print the remainder after dividing the answer by number 1000000007 (109 + 7).

Examples
Input
11
0 0 0 0 0 0 0 0 0 0 0
Output
1024
Input
6
0 3 1 0 0 0
Output
3

给出一个数n还有n个数ci
如果ci>0,表示排列上的第ci个位置上的数为i
如果ci=0,表示排列上的第ci个位置上的数不确定 即是说,有一个n的排列,其中部分position上的数固定,求有多少种排列满足:
对于排列上的任意一个数x,在x之前不同时存在x+1和x-1这2个数的方案数 solution:
这道题主要在于分情况讨论,得到答案
只要发现一个性质,就可以解决问题了
要保证对于任意一个数x,x+1和x-1不同时存在,则x之前的数放在一起刚好是一个[1,n]的子
区间[L,R],这个自区间的长度为x-1,且有is[x] = L - 1 || is[x] = R + 1
这样我们只需要分情况讨论,
部分情况直接推出公式得到答案
部分情况需要用到递推,同时维护当前的L,R
具体看代码 is[i]表示排列的第i个数固定为is[i]
pre[i]表示第i个数前一个被固定的数,没有则为-1
next[i]表示第i个数后一个被固定的数,没有则为-1
f[i]表示当前考虑到排列的第i个数,当前可行的方案数 ps:
这道题初始化f的时候要注意细节,分情况初始化
  //File Name: cf380D.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年05月20日 星期五 00时32分29秒 #include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <map> #define LL long long
#define next NEXT using namespace std; const int MAXN = + ;
const int MOD = (int)1e9 + ; int is[MAXN], pre[MAXN], next[MAXN];
LL f[MAXN],jie[MAXN]; void init(int n){
jie[] = ;
for(int i=;i<=n;i++)
jie[i] = jie[i-] * i % MOD;
int now = -;
for(int i=;i<=n;i++){
pre[i] = now;
if(is[i]) now = i;
}
now = -;
for(int i=n;i>;i--){
next[i] = now;
if(is[i]) now = i;
}
} LL qp(LL x,LL y){
LL res = ;
while(y){
if(y & ) res = res * x % MOD;
x = x * x % MOD;
y >>= ;
}
return res;
} LL get_c(LL x,LL y){
if(y < || x < y) return ;
if(y == || y == x) return ;
return jie[x] * qp(jie[y] * jie[x - y] % MOD,MOD - ) % MOD;
} LL solve(int n,bool flag){
if(!flag) return qp(,n - );
init(n);
//for(int i=1;i<=n;i++){
// printf("i = %d is = %d\n",i,is[i]);
//}
int L = n + , R = ;
for(int i=;i<=n;i++){
if(!is[i]) continue;
if(L <= is[i] && R >= is[i])
return ;
if(pre[i] == - && next[i] == -){
LL ans = ,now;
for(int x=;x < is[i];x++){
now = get_c(i-,x) * get_c(n-i,is[i]-x-) % MOD;
if(x > ) ans = (ans + now * % MOD) % MOD;
else ans = (ans + now) % MOD;
}
return ans;
}
else if(pre[i] > ){
f[i] = f[pre[i]];
//printf("i = %d pre = %d next = %d f = %d\n",i,pre[i],next[i],f[i]);
if(is[i] > is[pre[i]]) R++;
else L--;
//printf("L = %d R = %d\n",L,R);
if(next[i] == -){
return f[i] * get_c(n-i,L-) % MOD;
}
else{
if(is[next[i]] > R){
//printf("i = %d f = %d\n",i,f[i]);
f[i] = f[i] * get_c(next[i]-i-,is[next[i]]-R-) % MOD;
R = is[next[i]] - ;
L = R + - next[i];
//printf("i = %d f = %d\n",i,f[i]);
}
else{
//printf("i = %d f = %d\n",i,f[i]);
f[i] = f[i] * get_c(next[i]-i-,L-is[next[i]]-) % MOD;
L = is[next[i]] + ;
R = L + next[i] - ;
//printf("i = %d f = %d\n",i,f[i]);
}
}
//printf("L = %d R = %d\n",L,R);
}
else{
if(is[i] < is[next[i]]){
R = is[next[i]] - ;
L = R + - next[i];
}
else{
L = is[next[i]] + ;
R = L + next[i] - ;
}
int cnt = abs(is[next[i]] - is[i]);
f[i] = ;
if(i == ){
f[i] = get_c(next[i]-,R-is[i]);
}
else{
//printf("is = %d L = %d R = %d\n",is[i],L,R);
if(i- <= is[i]-L)
f[i] = qp(,i-) * get_c(next[i]-i-,is[i]-L-i+) % MOD;
//printf("f = %d\n",f[i]);
if(i- <= R-is[i])
(f[i] += qp(,i-) * get_c(next[i]-i-,R-is[i]-i+)% MOD) %= MOD;
//printf("f = %d\n",f[i]);
}
//printf("i = %d pre = %d next = %d f = %d\n",i,pre[i],next[i],f[i]);
//printf("L = %d R = %d\n",L,R);
}
}
return -;
} int main(){
int n,u;
bool flag = false;
scanf("%d",&n);
memset(is,,sizeof is);
for(int i=;i<=n;i++){
scanf("%d",&u);
if(u){
is[u] = i;
flag = true;
}
}
printf("%d\n",(int)solve(n,flag));
return ;
}
												

cf380D Sereja and Cinema 组合数学的更多相关文章

  1. Codeforces 380D Sereja and Cinema (看题解)

    Sereja and Cinema 首先我们可以发现除了第一个人, 其他人都会坐在已入坐人的旁边. 难点在于计算方案数.. 我们可以从外往里把确定的人用组合数算上去,然后缩小范围. #include& ...

  2. Codeforces 380 简要题解

    ABC见上一篇. 感觉这场比赛很有数学气息. D: 显然必须要贴着之前的人坐下. 首先考虑没有限制的方案数.就是2n - 1(我们把1固定,其他的都只有两种方案,放完后长度为n) 我们发现对于一个限制 ...

  3. CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)

    Lakhesh loves to make movies, so Nephren helps her run a cinema. We may call it No. 68 Cinema. Howev ...

  4. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  5. CF380C. Sereja and Brackets[线段树 区间合并]

    C. Sereja and Brackets time limit per test 1 second memory limit per test 256 megabytes input standa ...

  6. Codeforces #380 div2 C(729C) Road to Cinema

    C. Road to Cinema time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  7. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  8. 组合数学or not ---- n选k有重

    模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...

  9. 组合数学(全排列)+DFS CSU 1563 Lexicography

    题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...

随机推荐

  1. JAVA基本语义简介

    1.标识符 标识符可以有字母.数字.下划线(_).美元符($)组成,但不能包含@.%.空格等其他特殊符,不能以数字开头. 标识符不能是JAVA关键字和保留字(JAVA预留的关键字,以后的升级版中有可能 ...

  2. Linux驱动设计——阻塞和同步

    阻塞和非阻塞是设备访问的两种基本方式,阻塞和非阻塞驱动程序使用时,经常会用到等待队列. 阻塞和非阻塞 阻塞操作是指在执行设备操作时,若不能获得资源,则挂起进程直到满足可操作的条件后再进行操作.被挂起的 ...

  3. (转) Written Memories: Understanding, Deriving and Extending the LSTM

    R2RT   Written Memories: Understanding, Deriving and Extending the LSTM Tue 26 July 2016 When I was ...

  4. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  5. Intel MKL函数,如何得到相同的计算结果?【转】

    在运行程序时,我们总希望多次运行的结果,是完全一致,甚至在不同的机器与不同的OS中,程序运行的结果每一位都完全相同. 事实上,程序往往很难保证做到这一点. 为什么呢? 我们先看一个简单的例子: 当程序 ...

  6. java-源码下载

    jdk7 下载: http://download.java.net/openjdk/jdk7/ jdk8 下载: http://download.java.net/openjdk/jdk8/

  7. 设置页面不缓存 no-cache

    html中设置方法 <head> <META HTTP-EQUIV="Pragma" CONTENT="no-cache"> <M ...

  8. commonJS规范基本机构

    commonJS规范:使用 module.exports 和 require ,基本结构如下: // foo.js 输出模块 module.exports = function(x) { consol ...

  9. 查看当前web服务器的并发连接数

    对于web服务器来说,并发连接数是一个比较重要的参数,通过下面的命令就可以直接查看# netstat -nat | grep ":80"| grep EST | wc -l命令解释 ...

  10. eclipse中复制项目更名注意事项

    一.更改项目名称 web project Settings; 二.pom.xml中的项目名称更改