51nod1437 迈克步
傻叉单调栈
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
char sh[15];
void print(int x){
int cnt=0;
while(x) sh[++cnt]=x%10,x/=10;
dwn(i,cnt,1) putchar(sh[i]+48);
putchar(32);
}
const int nmax=2e5+5;
const int inf=0x7f7f7f7f;
int a[nmax],ans[nmax],l[nmax],r[nmax],q[nmax];
void maxs(int &a,int b){
if(a<b) a=b;
}
int main(){
int n=read();rep(i,1,n) a[i]=read();
l[1]=1;int cur=1;q[1]=1;
rep(i,2,n){
while(a[q[cur]]>=a[i]&&cur) --cur;
l[i]=q[cur]+1;q[++cur]=i;
}
r[n]=n;cur=1;q[1]=n;q[0]=n+1;
dwn(i,n-1,1){
while(a[q[cur]]>=a[i]&&cur) --cur;
r[i]=q[cur]-1;q[++cur]=i;
}
rep(i,1,n) maxs(ans[r[i]-l[i]+1],a[i]);
int tmp=0;
dwn(i,n,1) maxs(ans[i],tmp),maxs(tmp,ans[i]);
rep(i,1,n) print(ans[i]);printf("\n");
return 0;
}
有n只熊。他们站成一排队伍,从左到右依次1到n编号。第i只熊的高度是ai。
一组熊指的队伍中连续的一个子段。组的大小就是熊的数目。而组的力量就是这一组熊中最小的高度。
迈克想知道对于所有的组大小为x(1 ≤ x ≤ n)的,最大力量是多少。
单组测试数据。
第一行有一个整数n (1 ≤ n ≤ 2×10^5),表示熊的数目。
第二行包含n个整数以空格分开,a1, a2, ..., an (1 ≤ ai ≤ 10^9),表示熊的高度。
在一行中输出n个整数,对于x从1到n,输出组大小为x的最大力量。
10
1 2 3 4 5 4 3 2 1 6
6 4 4 3 3 2 2 1 1 1
51nod1437 迈克步的更多相关文章
- 51nod1437 迈克步 单调栈
考虑一个点作为最小值的区间$[L[i], R[i]]$ 那么这个区间的所有含$i$的子区间最小值都是$v[i]$ 因此,用单调栈求出$L[i], R[i]$后,对$R[i] - L[i] + 1$这个 ...
- 51nod 1437:迈克步 单调栈基础题
1437 迈克步 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 取消关注 有n只熊.他们站成一排队伍,从左到右依次1到 ...
- 51nod 1437 迈克步 单调栈
利用单调栈高效的求出,一个数a[i]在哪个区间内可作为最小值存在. 正向扫描,求出a[i]可做为最小值的区间的左边界 反向扫描,求出a[i]可作为最小值的区间的右边界 r[i] - l[i] +1 就 ...
- 51nod 1437 迈克步(单调栈)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1437 题意: 思路: 单调栈题.求出以每个数为区间最大值的区间范围即可. ...
- 51nod 1437 迈克步
题目链接 先利用单调栈or其他方法找到一个元素g[i]作为最小值的区间,设为[L, R]. 那么长度为R-L+1的组的最大值ans=max(ans,g[i]).但是有一个问题: 比如6这个元素是长度为 ...
- 51nod 1437 迈克步——单调栈
有n只熊.他们站成一排队伍,从左到右依次1到n编号.第i只熊的高度是ai. 一组熊指的队伍中连续的一个子段.组的大小就是熊的数目.而组的力量就是这一组熊中最小的高度. 迈克想知道对于所有的组大小为x( ...
- 胡小兔的OI日志3 完结版
胡小兔的 OI 日志 3 (2017.9.1 ~ 2017.10.11) 标签: 日记 查看最新 2017-09-02 51nod 1378 夹克老爷的愤怒 | 树形DP 夹克老爷逢三抽一之后,由于采 ...
- 51nod 1437
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1437 1437 迈克步 题目来源: CodeForces 基准时间限制: ...
随机推荐
- 使用 Microsoft Word 发布博客文章
以 Microsoft Word 2010 为例: 依次选择:文件 -> 保存并发送 -> 发布为博客文章 配置说明:新建账户 的 博客文章 URL 一栏填写 http://rpc.cn ...
- 8086CPU各寄存器的用途
8086 有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器.(2)指令指针.(3)标志寄存器和(4)段寄存器等4类. 1.通用寄存器有8个, 又可以分成2组,一组是数据寄存器(4个) ...
- cf div2 238 c
C. Unusual Product time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- LoaderManager使用详解(三)---实现Loaders
这篇文字将介绍Loader<D>类,并且介绍自定义Loader的实现.这是本系列的第三篇文章. 一:Loaders之前世界 二:了解LoaderManager 三:实现Loaders ...
- C# 比较方法
public int Compare(Product first, Product second) { return PartialComparer.RefernceCompare(first, se ...
- Javascript实现 图片的无缝滚动
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- hdu 1404/zoj 2725 Digital Deletions 博弈论
暴力打表!! 代码如下: #include<iostream> #include<algorithm> #include<cstdio> #include<c ...
- ssh超时断开的解决方法
当用SSH Secure Shell连接Linux时,如果几分钟没有任何操作,连接就会断开,必须重新登陆才行,每次都重复相同的操作,很是烦人,本文总结了两种解决的方法. 方法1:更改ssh服务器的配置 ...
- lintcode: 生成括号
生成括号 给定 n 对括号,请写一个函数以将其生成新的括号组合,并返回所有组合结果. 样例 给定 n = 3, 可生成的组合如下: "((()))", "(()())&q ...
- mq_close
NAME mq_close - 关闭一个消息队列 (REALTIME) SYNOPSIS #include <mqueue.h>int mq_close(mqd_t mqdes) DESC ...