hdu题目

poj题目

参考了 罗穗骞的论文《后缀数组——处理字符串的有力工具》

题意:求两个序列的最长公共子串

思路:后缀数组经典题目之一(模版题)

//后缀数组sa:将s的n个后缀从小到大排序后将 排序后的后缀的开头位置 顺次放入sa中,则sa[i]储存的是排第i大的后缀的开头位置。简单的记忆就是“排第几的是谁”。
//名次数组rank:rank[i]保存的是suffix(i){后缀}在所有后缀中从小到大排列的名次。则 若 sa[i]=j,则 rank[j]=i。简单的记忆就是“你排第几”。
//对于 后缀数组sa 与 名次数组rank ,有rank[ sa[i] ]=i (这是很重要的一点,通过sa与rank的关系可以求出后缀数组)
//height 数组: 定义height[i]=suffix(sa[i-1]) 和 suffix(sa[i]) 的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀。 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; #define maxn 200010
int wa[maxn],wb[maxn],wv[maxn],ws[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}//yuan lai zhi qian ba zhe li de l cuo dang cheng 1 le ...
void da(int *r,int *sa,int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=;i<m;i++)ws[i]=;
for(i=;i<n;i++)ws[x[i]=r[i]]++;
for(i=;i<m;i++)ws[i]+=ws[i-];
for(i=n-;i>=;i--)sa[--ws[x[i]]]=i;
for(j=,p=;p<n;j*=,m=p)
{
for(p=,i=n-j;i<n;i++)y[p++]=i;
for(i=;i<n;i++)if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=;i<n;i++)wv[i]=x[y[i]];
for(i=;i<m;i++)ws[i]=;
for(i=;i<n;i++)ws[wv[i]]++;
for(i=;i<m;i++)ws[i]+=ws[i-];
for(i=n-;i>=;i--)sa[--ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=,x[sa[]]=,i=;i<n;i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)? (p-):p++;
}
}
int rankk[maxn],height[maxn];
void calheight(int *r,int *sa,int n)
{
int i,j,k=;
for(i=;i<=n;i++)rankk[sa[i]]=i;
for(i=;i<n;height[rankk[i++]]=k)
for(k? k--:,j=sa[rankk[i]-];r[i+k]==r[j+k];k++);
}
int RMQ[maxn];
int mm[maxn];
int best[][maxn];
void initRMQ(int n)
{
int i,j,a,b;
for(mm[]=-,i=;i<=n;i++)
mm[i]=((i&(i-))==) ? mm[i-]+:mm[i-];
for(i=;i<=n;i++)best[][i]=i;
for(i=;i<=mm[n];i++)
for(j=;j<=n+-(<<i);j++)
{
a=best[i-][j];
b=best[i-][j+(<<(i-))];
if(RMQ[a]<RMQ[b])best[i][j]=a;
else best[i][j]=b;
}
}
int askRMQ(int a,int b)
{
int t;
t=mm[b-a+];b-=(<<t)-;
a=best[t][a];b=best[t][b];
return RMQ[a]<RMQ[b]? a:b;
}
int lcp(int a,int b)
{
int t;
a=rankk[a]; b=rankk[b];
if(a>b) {t=a;a=b;b=t;}
return (height[askRMQ(a+,b)]);
} char s[maxn];
int r[maxn],sa[maxn];
int main()
{
while(scanf("%s",s)!=EOF)
{
int len1=strlen(s);
s[len1]='';//yin wei bu ce ng chu xian ,suo yi bu yong dan xin ying xiang jie guo
scanf("%s",s+len1+);
int len2=strlen(s); for(int i=;i<len2;i++)r[i]=s[i];//r[i]biao shi pai de shi di ji
r[len2]=;//ji shu pai xu shi de xu yao ,zui hou yi ge jia she wei zui xiao da(r,sa,len2+,);
calheight(r,sa,len2);
int ans=;
//bian li height shu zu, cong di 2 ge kai shi (xia biao shi cong 1 kai shi de )
for(int i=;i<=len2;i++)
{
if(height[i]>ans)
{
if((len1<sa[i]&&len1>sa[i-])||(len1>sa[i]&&len1<sa[i-]))
ans=height[i];
}
}
printf("%d\n",ans);
}
return ;
}

HDU 1403 Longest Common Substring(后缀数组,最长公共子串)的更多相关文章

  1. hdu 1403 Longest Common Substring 后缀数组 模板题

    题目链接 题意 问两个字符串的最长公共子串. 思路 加一个特殊字符然后拼接起来,求得后缀数组与\(height\)数组.扫描一遍即得答案,注意判断起始点是否分别在两个串内. Code #include ...

  2. [SPOJ1811]Longest Common Substring 后缀自动机 最长公共子串

    题目链接:http://www.spoj.com/problems/LCS/ 题意如题目,求两个串的最大公共子串LCS. 首先对其中一个字符串A建立SAM,然后用另一个字符串B在上面跑. 用一个变量L ...

  3. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  4. HDU 1403 Longest Common Substring(后缀自动机——附讲解 or 后缀数组)

    Description Given two strings, you have to tell the length of the Longest Common Substring of them. ...

  5. HDU - 1403 - Longest Common Substring

    先上题目: Longest Common Substring Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1403 Longest Common Substring(最长公共子串)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 题意:给出两个字符串,求最长公共子串的长度. 思路: 刚开始学后缀数组,确实感觉很难,但是这东西很强大,所 ...

  7. POJ 2774 Long Long Message&&HDU 1403 Longest Common Substring&&COJ 1203

    后缀数组的买1送2题... HDU的那题数据实在是太水了,后来才发现在COJ和POJ上都是WA..原因在一点:在建立sa数组的时候里面的n应该是字符串长度+1....不懂可以去看罗大神的论文... 就 ...

  8. POJ 2217 (后缀数组+最长公共子串)

    题目链接: http://poj.org/problem?id=2217 题目大意: 求两个串的最长公共子串,注意子串是连续的,而子序列可以不连续. 解题思路: 后缀数组解法是这类问题的模板解法. 对 ...

  9. POJ-2774-Long Long Message(后缀数组-最长公共子串)

    题意: 给定两个字符串 A 和 B,求最长公共子串. 分析: 字符串的任何一个子串都是这个字符串的某个后缀的前缀. 求 A 和 B 的最长公共子串等价于求 A 的后缀和 B 的后缀的最长公共前缀的最大 ...

随机推荐

  1. 【Cocoa】 Initializing View Instances Created in Interface Builder

    Initializing View Instances Created in Interface Builder View instances that are created in Interfac ...

  2. 浅谈Objective-C编译器指令

    ------<a href="http://www.itheima.com" target="blank">Java培训.Android培训.iOS ...

  3. 菜鸟学习Hibernate——缓存

    Hibernate的缓存分为三种:一级缓存.二级缓存.查询缓存.下面我就为大家介绍一下. 一.概念. 一级缓存:第一级存放于session中称为一级缓存.Session 级别的缓存,它同session ...

  4. Android--简单开发和使用ContentProvider数据共享

    今天学习的时候学到了ContentProvider数据共享这个东东,所以自己写了个小例子: 我们要开发ContentProvider的话,需要创建一个类去继承ContentProvider,里面会让你 ...

  5. hdu 4027 Can you answer these queries?

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4027 Can you answer these queries? Description Proble ...

  6. core java 8~9(GUI & AWT事件处理机制)

    MODULE 8 GUIs--------------------------------GUI中的包: java.awt.*; javax.swing.*; java.awt.event.*; 要求 ...

  7. 鲁棒性是 Robustness

    鲁棒性是 Robustness 的音译,是指当系统受到不正常干扰时,是否还能保证主体功能正常运作.可参考 维基百科:http://zh.wikipedia.org/zh/ 鲁棒性 _( 计算机科学 ) ...

  8. JSON数组操作

    在jquery中处理JSON数组的情况中遍历用到的比较多,但是用添加移除这些好像不是太多. 今天试过json[i].remove(),json.remove(i)之后都不行,看网页的DOM对象中好像J ...

  9. Python实现LR(逻辑回归)

    Python实现LR(逻辑回归) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end o ...

  10. 【BZOJ 2120】 数颜色

    Description 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜 ...