信息论(Information Theory)是概率论与数理统计的一个分枝。用于信息处理、信息熵、通信系统、数据传输、率失真理论、密码学、信噪比、数据压缩和相关课题。本文主要罗列一些基于熵的概念及其意义,注意本文罗列的所有 $\log$ 都是以 2 为底的。

信息熵

在物理界中熵是描述事物无序性的参数,熵越大则越混乱。类似的在信息论中熵表示随机变量的不确定程度,给定随机变量 X ,其取值 $x_1, x_2, \cdots ,x_m$ ,则信息熵为:

\[H(X) =\sum_{i=1}^{m} p(x_i) \cdot \log \frac{1}{p(x_i)} = - \sum_{i=1}^{m} p(x_i) \cdot \log p(x_i)\]

这里有一张图,形象的描述了各种各样的熵的关系:

条件熵

设 X ,Y 为两个随机变量,X 的取值为 $x_1,x_2,...,x_m$ ,Y 的取值为 $y_1,y_2,...y_n$ ,则在X 已知的条件下 Y 的条件熵记做 H(Y|X) :

\begin{aligned}
H(Y|X)
&= \sum_{i=1}^mp(x_i)H(Y|X=x_i) \\
&= -\sum_{i=1}^mp(x_i)\sum_{j = 1}^np(y_j|x_i)\log p(y_j|x_i) \\
&= -\sum_{i=1}^m \sum_{j=1}^np(y_j,x_i)\log p(y_j|x_i) \\
&= -\sum_{x_i,y_j} p(x_i,y_j)\log p(y_j|x_i)
\end{aligned}

联合熵

设 X Y 为两个随机变量,X 的取值为 $x_1,x_2,...,x_m$ ,Y 的取值为 $y_1,y_2,...y_n$ ,则其联合熵定义为:

\[H(X,Y) = -\sum_{i=1}^m\sum_{j=1}^n p(x_i,y_j)\log p(x_i,y_j) \]
联合熵与条件熵的关系:

\begin{aligned}
H(Y|X) &= H(X,Y) - H(X)      \\
H(X|Y) &= H(X,Y) - H(Y)     
\end{aligned}

联合熵满足几个性质 :

1)$H(Y|X) \ge \max(H(X),H(Y))$ ;

2)$H(X,Y) \le H(X) + H(Y)$ ;

3)$H(X,Y) \ge 0$.

相对熵 KL距离

相对熵,又称为KL距离,是Kullback-Leibler散度(Kullback-Leibler Divergence)的简称。它主要用于衡量相同事件空间里的两个概率分布的差异。其定义如下:

\[D(P||Q) = \sum_{x \in X} P(x) \cdot \log\frac{P(x)}{Q(x)} \]

相对熵(KL-Divergence KL散度): 用来描述两个概率分布 P 和 Q 差异的一种方法。 它并不具有对称性,这就意味着:

\[D(P||Q) \ne  D(Q||P)\]

KL 散度并不满足距离的概念,因为 KL 散度不是对称的,且不满足三角不等式。

对于两个完全相同的分布,他们的相对熵为 0 ,$D(P||Q)$ 与函数 P 和函数 Q 之间的相似度成反比,可以通过最小化相对熵来使函数 Q 逼近函数 P ,也就是使得估计的分布函数接近真实的分布。KL 可以用来做一些距离的度量工作,比如用来度量 topic model 得到的 topic 分布的相似性.

互信息

对于随机变量 $X,Y$ 其互信息可表示为 $MI(X,Y)$:

\[MI(X,Y) = \sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i,y_j) \cdot log_2 {\frac{p(x_i,y_j)}{p(x_i)p(y_j)}} \]

与联合熵分布的区别:

\[H(X,Y) = H(X) + H(Y|X)  = H(Y) + H(X|Y)\]

\[MI(X,Y) = H(X) -H(Y|X)  = H(Y) - H(X|Y)\]

交叉熵

设随机变量 X 的真实分布为 p,用 q 分布来近似 p ,则随机变量 X 的交叉熵定义为:

\[H(p,q) = E_p[-\log q] = -\sum_{i=1}^m{p(x_i) \log{q(x_i)}} \]

形式上可以理解为使用 $q$ 来代替 $p$ 求信息熵了。交叉熵用作损失函数时,$q$ 即为所求的模型,可以得到其与 相对熵的关系:

\begin{aligned}
H(p,q) &= -\sum_x p(x) \log q(x) \\
       &= -\sum_x p(x) \log \frac{q(x)}{p(x)}p(x)\\
       &= -\sum_x p(x) \log p(x) -\sum_x p(x)  \log  \frac{q(x)}{p(x)}\\
       &= H(p)+ D(p||q)
\end{aligned}

可见分布 p 与 q 的交叉熵等于 p 的熵加上 p 与 q 的KL距离,所以交叉熵越小, $D(P||Q)$ 越小,即 分布 q 与 p 越接近,这也是相对熵的一个意义。

信息增益,是一种衡量样本特征重要性的方法。 特征A对训练数据集D的信息增益g(D,A) ,定义为集合D的经验熵H(D)与特征A在给定条件下D的经验条件熵H(D|A)之差,即

\[g(D,A) = H(D) – H(D|A)\]

可见信息增益与互信息类似,然后是信息增益比:

\[g_R(D,A) = \frac{g(D,A)}{H(D)}\]

关于信息论中的熵的一系列公式暂时写到这里,遇到新的内容随时补充。

 
 

信息熵 Information Theory的更多相关文章

  1. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  2. Tree - Information Theory

    This will be a series of post about Tree model and relevant ensemble method, including but not limit ...

  3. information entropy as a measure of the uncertainty in a message while essentially inventing the field of information theory

    https://en.wikipedia.org/wiki/Claude_Shannon In 1948, the promised memorandum appeared as "A Ma ...

  4. Better intuition for information theory

    Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/201 ...

  5. 信息论 | information theory | 信息度量 | information measures | R代码(一)

    这个时代已经是多学科相互渗透的时代,纯粹的传统学科在没落,新兴的交叉学科在不断兴起. life science neurosciences statistics computer science in ...

  6. 【PRML读书笔记-Chapter1-Introduction】1.6 Information Theory

    熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无 ...

  7. 信息熵 Information Entropy

    信息熵用于描述信源的不确定度, 即用数学语言描述概率与信息冗余度的关系. C. E. Shannon 在 1948 年发表的论文A Mathematical Theory of Communicati ...

  8. 决策论 | 信息论 | decision theory | information theory

    参考: 模式识别与机器学习(一):概率论.决策论.信息论 Decision Theory - Principles and Approaches 英文图书 What are the best begi ...

  9. The basic concept of information theory.

    Deep Learning中会接触到的关于Info Theory的一些基本概念.

随机推荐

  1. 安装mysql之后,存入中文出现乱码

    如图显示:安装mysql之后,存入中文出现乱码 解决方案: 找到如图的文件位置 打开进行如图的修改: 结果:

  2. ExtJs之Field.Trigger和Field.Spinner

    作文本框功能的. <!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta h ...

  3. 我是如何学习 Linux 的

    为何要学习 Linux? 这个问题可能困扰着很多 Linux 初学者和爱好者,其实我也说不上来为何要学习 Linux,可能最实在的理由就是—-Linux 相关工作岗位很多.在“见到” Linux 的第 ...

  4. redhat6修改主机名

    1.临时修改主机名 sudo hostname lyhost 2.永久修改主机名 vim /etc/sysconfig/network 修改里面的hostname字段即可,重启后生效.

  5. 安卓Intent.ACTION_TIME_TICK 广播

    Intent.ACTION_TIME_TICK 广播需要动态注册,不能在清单文件配置. TimeReceiver mBroadcastReceiver = new TimeReceiver(); In ...

  6. 关于SIGPIPE导致的程序退出

    http://www.cppblog.com/elva/archive/2008/09/10/61544.html 收集一些网上的资料,以便参考: http://blog.chinaunix.net/ ...

  7. Java多线程-线程的调度(休眠)

    Java线程调度是Java多线程的核心,只有良好的调度,才能充分发挥系统的性能,提高程序的执行效率. 这里要明确的一点,不管程序员怎么编写调度,只能最大限度的影响线程执行的次序,而不能做到精准控制. ...

  8. Java-J2SE学习笔记-字符串转化为二维数组

    1.字符串转化为二维Double数组 2.代码: package Test; public class TestDouble { public static void main(String[] ar ...

  9. 点击Button后,执行MouseDown的过程(使用Call Stack观察很清楚)

    Form1上放两个按钮Button1和Button2,默认输入焦点是Button1,现在点击Button2,产生WM_LBUTTONDOWN消息 procedure TForm1.Button2Mou ...

  10. 怎样做出优秀的扁平化设计风格 PPT 或 Keynote 幻灯片演示文稿?(装)

    不知道你有没有想过,为什么很人多的扁平化 PPT 是这个样子: 或者是这样: 然而,还有一小撮人的扁平化 PPT 却拥有那么高颜值: 为什么会产生这么大的差距呢?丑逼 PPT 应该如何逆袭成为帅逼呢? ...