MViT:性能杠杠的多尺度ViT | ICCV 2021
论文提出了多尺度视觉
Transformer
模型MViT
,将多尺度层级特征的基本概念与Transformer
模型联系起来,在逐层扩展特征复杂度同时降低特征的分辨率。在视频识别和图像分类的任务中,MViT
均优于单尺度的ViT
。来源:晓飞的算法工程笔记 公众号
论文: Multiscale Vision Transformers
Introduction
论文提出了用于视频和图像识别的多尺度ViT(MViT
),将FPN
的多尺度层级特征结构与Transformer
联系起来。MViT
包含几个不同分辨率和通道数的stage
,从小通道的输入分辨率开始,逐层地扩大通道数以及降低分辨率,形成多尺度的特征金字塔。
在视频识别任务上,不使用任何外部预训练数据,MViT
比视频Transformer
模型有显着的性能提升。而在ImageNet
图像分类任务上,简单地删除一些时间相关的通道后,MViT
比用于图像识别的单尺度ViT的显着增益。
Multiscale Vision Transformer (MViT)
通用多尺度Transformer
架构的核心在于多stage
的设计,每个stage
由多个具有特定分辨率和通道数的Transformer block
组成。多尺度Transformers
逐步扩大通道容量,同时逐步池化从输入到输出的分辨率。
Multi Head Pooling Attention
多头池化注意(MHPA
)是一种自注意操作,可以在Transformer block
中实现分辨率灵活的建模,使得多尺度Transformer
可在逐渐变化的分辨率下运行。与通道和分辨率固定的原始多头注意(MHA
)操作相比,MHPA
池化通过降低张量的分辨率来缩减输入的整体序列长度。
对于序列长度为 \(L\) 的 \(D\) 维输入张量 \(X\),\(X \in \mathbb{R}^{L\times D}\),根据MHA
的定义先通过线性运算将输入\(X\)映射为Query
张量\(\hat{Q} \in \mathbb{R}^{L\times D}\),Key
张量\(\hat{K} \in \mathbb{R}^{L\times D}\)和Value
张量\(\hat{V} \in \mathbb{R}^{L\times D}\)。
然后通过池化操作\(\mathcal{P}\)将上述张量缩减到特定长度。
Pooling Operator
在进行计算之前,中间张量\(\hat{Q}\)、\(\hat{K}\)、\(\hat{V}\)需要经过池化运算\(\mathcal{P}(·; \Theta)\)的池化,这是的MHPA
和MViT
的基石。
运算符\(\mathcal{P}(·; \Theta)\)沿每个通道对输入张量执行池化核计算。将\(\Theta\)分解为\(\Theta := (k, s, p)\),运算符使用维度\(k\)为\(k_T\times k_H\times k_W\)、步幅\(s\)为\(s_T\times s_H \times s_W\)、填充\(p\)为\(p_T\times p_H\times p_W\)的池化核\(k\),将维度为\(L = T\times H\times W\)的输入张量减少到\(\tilde{L}\):
通过坐标公式计算,将池化的张量展开得到输出\(\mathcal{P}(Y ; \Theta)\in \mathbb{R}^\tilde{L}\times D\),序列长度减少为\(\tilde{L}= \tilde{T}\times \tilde{H}\times \tilde{W}\)。
默认情况下,MPHA
的重叠内核\(k\)会选择保持形状的填充值\(p\),因此输出张量\(\mathcal{P}(Y ; \Theta)\)的序列长度能够降低\(\tilde{L}\)整体减少\(s_{T}s_{H}s_{W}\)倍。
Pooling Attention.
池化运算符\(\mathcal{P}(\cdot; \Theta)\)在所有\(\hat{Q}\)、\(\hat{K}\)、\(\hat{V}\)中间张量中是独立的,使用不同的池化核\(k\)、不同的步长\(s\)以及不同的填充\(p\)。定义\(\theta\)产生的池化后pre-attention
向量为\(Q = P(\hat{Q}; \Theta_Q)\), \(K = P(\hat{K}; \Theta_K)\)和\(V = P(\hat{V}; \Theta_V)\),随后在这些向量上进行注意力计算:
根据矩阵乘积可知,上述公式会引入\(S_K=S_V\)的约束。总体而言,池化注意力的完整计算如下:
\(\sqrt{d}\)用于按行归一化内积矩阵。池化注意力计算的输出序列长度的缩减跟\(\mathcal{P}(\cdot)\)中的\(Q\)向量一样,为步长相关的\(s^Q_TS^Q_HS^Q_W\)倍。
Multiple heads.
与常规的注意力操作一样,MHPA
可通过\(h\)个头来并行化计算,将\(D\)维输入张量\(X\)的平均分成\(h\)个非重叠子集,分别执行注意力计算。
Computational Analysis.
Q
、K
、V
张量的长度缩减对多尺度Transformer
模型的基本计算和内存需求具有显着的好处,序列长度缩减可表示为:
考虑到\(\mathcal{P}(·; \Theta)\)的输入张量具有通道\(D\times T\times H\times W\),MHPA
的每个头的运行时复杂度为\(O(T HW D/h(D + T HW/f_Q f_K))\)和内存复杂度为\(O(T HW h(D/h + T HW/f_Q f_K))\)。
另外,通过对通道数\(D\)和序列长度项\(THW/f_Q f_K\)之间的权衡,可指导架构参数的设计选择,例如头数和层宽。
Multiscale Transformer Networks
Preliminaries: Vision Transformer (ViT)
ViT
将\(T\times H\times W\)的输入切分成\(1\times 16\times 16\)的不重叠小方块,通过point-wise
的线性变换映射成\(D\)维向量。
随后将positional embedding
\(E\in \mathbb{R}^{L\times D}\)添加到长度为\(L\)、通道为\(D\)的投影序列中,对位置信息进行编码以及打破平移不变性。最后,将可学习的class embedding
附加到投影序列中。
得到的长度为\(L + 1\)的序列由\(N\)个Transformer block
依次处理,每个Transformer block
都包含MHA
、MLP
和LN
操作。定义\(X\)视为输入,单个Transformer block
的输出\(Block(X)\)的计算如下:
\(N\)个连续block
处理后的结果序列会被层归一化,随后将class embedding
提取并通过线性层预测所需的输出。默认情况下,MLP
的隐藏层通道是\(4D\)。另外,需要注意的是,ViT
在所有块中保持恒定的通道数和空间分辨率。
Multiscale Vision Transformers (MViT).
MViT
的关键是逐步提高通道通道以及降低空间分辨率,整体结构如表2所示。
Scale stages
每个scale stage
包含\(N\)个Transformer block
,stage
内的block
输出相同通道数和分辨率的特征。在网络输入处(表2中的cube1
),通过三维映射将图像处理为通道数较小(比典型的ViT
模型小8倍),但长度很长(比典型的ViT
模型高16倍)图像块序列。
在scale stage
之间转移时,需要上采样处理序列的通道数以及下采样处理序列的长度。这样的做法能够有效地降低视觉数据的空间分辨率,使得网络能够在更复杂的特征中理解被处理的信息。
Channel expansion
在stage
转移时,通过增加最后一个MLP
层的输出来增加通道数。通道数的增加与空间分辨率的缩减相关,假设空间分倍率下采样4倍,那通道数则增加2倍。这样的设计能够在一定程度上保持stage
之间的计算复杂度,跟卷积网络的设计理念类似。
Query pooling
由MPHA
公式可知,Q
张量可控制输出的序列长度,通过步长为\(s\equiv (s^Q_T, s^Q_H, s^Q_W)\)的\(\mathcal{P}(Q;k;p;s)\)池化操作将序列长度缩减\(s^Q_T\cdot s^Q_H\cdot s^Q_W\)倍。在每个stage
中,仅需在开头中减少分辨率,剩余部分均保持分辨率,所以仅设置stage
的首个MHPA
操作的步长`\(S^Q > 1\),其余的约束为\(s^Q\equiv (1,1,1)\)。
Key-Value pooling
与Q
张量不同,改变K
和V
张量的序列长度不会改变输出序列长度,但在降低池化操作的的整体计算复杂度中起着关键作用。
因此,对K
、V
和Q
池化的使用进行解耦,Q
池化用于每个stage
的第一层,K
、V
池化用于剩余的层。由MPHA
公式可知,K
和V
张量的序列长度需要相同才能计算注意力权重,因此K
、V
张量池化的步长需要相同。在默认设置中,约束同一stage
的池化参数\((k; p; s)\)为相同,即\(\Theta_K ≡ \Theta_V\),但可自适应地改变stage
之间的s
缩放参数。
Skip connections
如图3所示,由于通道数和序列长度在residual block
内发生变化,需要在skip connection
中添加\(\mathcal{P}(\cdot; {\Theta}_{Q})\)池化来适应其两端之间的通道不匹配。
同样地,为了处理stage
之间的通道数不匹配,采用一个额外的线性层对MHPA
操作的layer-normalized
输出进行升维处理。
Network instantiation details
表3展示了ViT
和MViT
的基本模型的具体结构:
ViT-Base
(表 3a):将输入映射成尺寸为\(1\times 16\times 16\)且通道为\(D = 768\)的不重叠图像块,然后使用\(N = 12\)个Transformer block
进行处理。对于\(8\times 224\times 224\)的输入,所有层的分辨率固定为\(768\times 8\times 14\times 14\),序列长度为\(8\times 14\times 14 + 1=1569\)。MViT-Base
(表 3b):由4个scale stage
组成,每个stage
都有几个输出尺寸一致的Transformer block
。MViT-B
通过形状为\(3\times 7\times 7\)的立方体(类似卷积操作)将输入映射且通道为\(D = 96\)的重叠图像块序列,序列长度为\(8\times 56\times 56 + 1 = 25089\)。该序列每经过一个stage
,序列长度都会减少4倍,最终输出的序列长度为\(8\times 7\times 7 + 1 = 393\)。同时,通道数也会被上采样2倍,最终增加到768。需要注意,所有池化操作以及分辨率下采样仅在数据序列上执行,不涉及class token embedding
。
在scale1 stage
将MHPA
的头数量设置为\(h = 1\),随着通道数增加头数量(保持\(D/h=96\))。在stage
转移时,通过MLP
前一stage
的输出通道增加2倍,并且在下一stage
开头对Q
执行MHPA
池化,其中\(s^{Q} = (1, 2, 2)\)。
在MHPA block
中使用\(\Theta_K \equiv \Theta_V\)的K
、V
池化,其中,scale1
的步长为\(s^{K}=(1,8,8)\)。步长随着stage
的分辨率缩小而减少,使得K
、V
在block
间保持恒定的缩放比例。
Experiments
Video Recognition
在五个视频识别数据集上的主要结果对比,MViT
均有不错的性能提升。
Image Recognition
在ImageNet上对比图像分类效果。
Conclusion
论文提出了多尺度视觉Transformer
模型MViT
,将多尺度层级特征的基本概念与Transformer
模型联系起来,在逐层扩展特征复杂度同时降低特征的分辨率。在视频识别和图像分类的任务中,MViT
均优于单尺度的ViT
。
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】
MViT:性能杠杠的多尺度ViT | ICCV 2021的更多相关文章
- ICCV 2021口罩人物身份鉴别全球挑战赛冠军方案分享
1. 引言 10月11-17日,万众期待的国际计算机视觉大会 ICCV 2021 (International Conference on Computer Vision) 在线上如期举行,受到全球计 ...
- 贼厉害,手撸的 SpringBoot 缓存系统,性能杠杠的!
一.通用缓存接口 二.本地缓存 三.分布式缓存 四.缓存"及时"过期问题 五.二级缓存 缓存是最直接有效提升系统性能的手段之一.个人认为用好用对缓存是优秀程序员的必备基本素质. 本 ...
- ICCV2021 | Tokens-to-Token ViT:在ImageNet上从零训练Vision Transformer
前言 本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从 ...
- [炼丹术]基于SwinTransformer的目标检测训练模型学习总结
基于SwinTransformer的目标检测训练模型学习总结 一.简要介绍 Swin Transformer是2021年提出的,是一种基于Transformer的一种深度学习网络结构,在目标检测.实例 ...
- 论文翻译:2022_DNS_1th:Multi-scale temporal frequency convolutional network with axial attention for speech enhancement
论文地址:带轴向注意的多尺度时域频率卷积网络语音增强 论文代码:https://github.com/echocatzh/MTFAA-Net 引用:Zhang G, Yu L, Wang C, et ...
- sql的那些事(一)
一.概述 书写sql是我们程序猿在开发中必不可少的技能,优秀的sql语句,执行起来吊炸天,性能杠杠的.差劲的sql,不仅使查询效率降低,维护起来也十分不便.一切都是为了性能,一切都是为了业务,你觉得你 ...
- 基于Docker快速搭建多节点Hadoop集群--已验证
Docker最核心的特性之一,就是能够将任何应用包括Hadoop打包到Docker镜像中.这篇教程介绍了利用Docker在单机上快速搭建多节点 Hadoop集群的详细步骤.作者在发现目前的Hadoop ...
- 如何优化TableView
关于UITable的优化: 1.最常用的就是不重复生成单元格,很常见,很实用: 2.使用不透明的视图可以提高渲染速度,xCode中默认TableCell的背景就是不透明的: 3.如果有必要减少视图中的 ...
- Online Object Tracking: A Benchmark 翻译
来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...
- iOS tableview 优化总结
根据网络上的优化方法进行了总括.并未仔细进行语言组织.正在这些优化方法进行学习,见另一篇文章 提高app流畅度 1.cell子控件创建写在 initWithStyle:reuseIdentifier ...
随机推荐
- 【漏洞复现】金蝶OA-EAS系统 uploadLogo.action 任意文件上传漏洞(0day)
阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站.服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作.利用此文所提供的 ...
- CSS——动画
@keyframes 规则 要创建 CSS 动画,您首先需要了解 @keyframes 规则,@keyframes 规则用来定义动画各个阶段的属性值,类似于 flash 动画中的关键帧,语法格式如下: ...
- SpringBoot自定义注解失效原因(2022-10-3)
长话短说,我负责的是一个多模块项目,接手的时候没有注意 @ComponentScan 注解的扫描范围,所以打包的时候,没有扫到我新加包. 所以,重点检查下 @ComponentScan 注解的范围
- 莫烦tensorflow学习记录 (6)卷积神经网络 CNN (Convolutional Neural Network)
卷积 和 神经网络 莫烦大佬的原文章https://mofanpy.com/tutorials/machine-learning/tensorflow/intro-CNN/ 我的理解就是千层饼,鸡蛋烧 ...
- 【Azure App Service】.NET代码实验App Service应用中获取TLS/SSL 证书 (App Service Linux/Linux Container)
在前一篇文章中,我们是把.NET 8应用读取SSL证书(X509)示例部署在App Service Windows环境中,那么如果部署在Linux环境,以及Linux Container中呢? 根据前 ...
- NOIP模拟49
虚伪的眼泪,会伤害别人,虚伪的笑容,会伤害自己. 前言 暑假集训过后的第一次考试,成绩一般,没啥好说的 T1 Reverse 解题思路 看到这个题的第一眼就感觉是最短路,毕竟题目的样子就好像之前做过的 ...
- itest work 开源接口测试&敏捷测试管理平台 9.5.0 GA_u1,优化及修复关键 BUG
(一)itest work 简介 itest work (爱测试) 一站式工作站让测试变得简单.敏捷,"好用.好看,好敏捷" ,是itest wrok 追求的目标.itest w ...
- 鸿蒙HarmonyOS实战-ArkTS语言基础类库(概述)
一.概述 1.什么是语言基础类库 语言基础类库,也称为标准库或核心库,是编程语言提供的一组内置的基础功能和常用工具的集合.它通常包含了各种数据结构.算法.输入输出处理.字符串处理.日期时间处理.文件操 ...
- Python结合文件名称将多个文件复制到不同路径下
本文介绍基于Python语言,针对一个文件夹下的大量栅格遥感影像文件,基于其各自的文件名,分别创建指定名称的新文件夹,并将对应的栅格遥感影像文件复制到不同的新文件夹下的方法. 首先,我们来看一 ...
- css作用 文本属性 颜色属性
Css作用:美化页面 各种css属性 接触的 css属性 width: height: background: Color 选择符和声明 声明包括 属性:属性值 选择符:{ 属性:属性值 } 1:文本 ...