Hugging Face x LangChain: 全新 LangChain 合作伙伴包
我们很高兴官宣发布 langchain_huggingface
,这是一个由 Hugging Face 和 LangChain 共同维护的 LangChain 合作伙伴包。这个新的 Python 包旨在将 Hugging Face 最新功能引入 LangChain 并保持同步。
源自社区,服务社区
目前,LangChain 中所有与 Hugging Face 相关的类都是由社区贡献的。虽然我们以此为基础蓬勃发展,但随着时间的推移,其中一些类在设计时由于缺乏来自 Hugging Face 的内部视角而在后期被废弃。
通过 Langchain 合作伙伴包这个方式,我们的目标是缩短将 Hugging Face 生态系统中的新功能带给 LangChain 用户所需的时间。
langchain-huggingface
与 LangChain 无缝集成,为在 LangChain 生态系统中使用 Hugging Face 模型提供了一种可用且高效的方法。这种伙伴关系不仅仅涉及到技术贡献,还展示了双方对维护和不断改进这一集成的共同承诺。
起步
langchain-huggingface
的起步非常简单。以下是安装该 软件包 的方法:
pip install langchain-huggingface
现在,包已经安装完毕,我们来看看里面有什么吧!
LLM 文本生成
HuggingFacePipeline
transformers
中的 Pipeline 类是 Hugging Face 工具箱中最通用的工具。LangChain 的设计主要是面向 RAG 和 Agent 应用场景,因此,在 Langchain 中流水线被简化为下面几个以文本为中心的任务: 文本生成
、 文生文
、 摘要
、 翻译
等。
用户可以使用 from_model_id
方法直接加载模型:
from langchain_huggingface import HuggingFacePipeline
llm = HuggingFacePipeline.from_model_id(
model_id="microsoft/Phi-3-mini-4k-instruct",
task="text-generation",
pipeline_kwargs={
"max_new_tokens": 100,
"top_k": 50,
"temperature": 0.1,
},
)
llm.invoke("Hugging Face is")
也可以自定义流水线,再传给 HuggingFacePipeline
类:
from transformers import AutoModelForCausalLM, AutoTokenizer,pipeline
model_id = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_4bit=True,
#attn_implementation="flash_attention_2", # if you have an ampere GPU
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=100, top_k=50, temperature=0.1)
llm = HuggingFacePipeline(pipeline=pipe)
llm.invoke("Hugging Face is")
使用 HuggingFacePipeline
时,模型是加载至本机并在本机运行的,因此你可能会受到本机可用资源的限制。
HuggingFaceEndpoint
该类也有两种方法。你可以使用 repo_id
参数指定模型。也可以使用 endpoint_url
指定服务终端,这些终端使用 无服务器 API,这对于有 Hugging Face 专业帐户 或 企业 hub 的用户大有好处。普通用户也可以通过在代码环境中设置自己的 HF 令牌从而在免费请求数配额内使用终端。
from langchain_huggingface import HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
task="text-generation",
max_new_tokens=100,
do_sample=False,
)
llm.invoke("Hugging Face is")
llm = HuggingFaceEndpoint(
endpoint_url="<endpoint_url>",
task="text-generation",
max_new_tokens=1024,
do_sample=False,
)
llm.invoke("Hugging Face is")
该类在底层实现时使用了 InferenceClient,因此能够为已部署的 TGI 实例提供面向各种用例的无服务器 API。
ChatHuggingFace
每个模型都有最适合自己的特殊词元。如果没有将这些词元添加到提示中,将大大降低模型的表现。
为了把用户的消息转成 LLM 所需的提示,大多数 LLM 分词器中都提供了一个名为 chat_template 的成员属性。
要了解不同模型的 chat_template
的详细信息,可访问我创建的 space!
ChatHuggingFace
类对 LLM 进行了包装,其接受用户消息作为输入,然后用 tokenizer.apply_chat_template
方法构造出正确的提示。
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
endpoint_url="<endpoint_url>",
task="text-generation",
max_new_tokens=1024,
do_sample=False,
)
llm_engine_hf = ChatHuggingFace(llm=llm)
llm_engine_hf.invoke("Hugging Face is")
上述代码等效于:
# with mistralai/Mistral-7B-Instruct-v0.2
llm.invoke("<s>[INST] Hugging Face is [/INST]")
# with meta-llama/Meta-Llama-3-8B-Instruct
llm.invoke("""<|begin_of_text|><|start_header_id|>user<|end_header_id|>Hugging Face is<|eot_id|><|start_header_id|>assistant<|end_header_id|>""")
嵌入
Hugging Face 里有很多非常强大的嵌入模型,你可直接把它们用于自己的流水线。
首先,选择你想要的模型。关于如何选择嵌入模型,一个很好的参考是 MTEB 排行榜。
HuggingFaceEmbeddings
该类使用 sentence-transformers 来计算嵌入。其计算是在本机进行的,因此需要使用你自己的本机资源。
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
model_name = "mixedbread-ai/mxbai-embed-large-v1"
hf_embeddings = HuggingFaceEmbeddings(
model_name=model_name,
)
texts = ["Hello, world!", "How are you?"]
hf_embeddings.embed_documents(texts)
HuggingFaceEndpointEmbeddings
HuggingFaceEndpointEmbeddings
与 HuggingFaceEndpoint
对 LLM 所做的非常相似,其在实现上也是使用 InferenceClient 来计算嵌入。它可以与 hub 上的模型以及 TEI 实例一起使用,TEI 实例无论是本地部署还是在线部署都可以。
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
hf_embeddings = HuggingFaceEndpointEmbeddings(
model= "mixedbread-ai/mxbai-embed-large-v1",
task="feature-extraction",
huggingfacehub_api_token="<HF_TOKEN>",
)
texts = ["Hello, world!", "How are you?"]
hf_embeddings.embed_documents(texts)
总结
我们致力于让 langchain-huggingface
变得越来越好。我们将积极监控反馈和问题,并努力尽快解决它们。我们还将不断添加新的特性和功能,以拓展该软件包使其支持更广泛的社区应用。我们强烈推荐你尝试 langchain-huggingface
软件包并提出宝贵意见,有了你的支持,这个软件包的未来道路才会越走越宽。
英文原文: https://hf.co/blog/langchain
原文作者: Joffrey Thomas,Kirill Kondratenko,Erick Friis
译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。
Hugging Face x LangChain: 全新 LangChain 合作伙伴包的更多相关文章
- IBM新合作伙伴计划助力企业转型升级
IBM作为老牌企业,一直在引领者技术方面的变革.当IBM再一次从自我革新开始,期望能够更快的将认知计算和云推广给自己的合作伙伴和用户们,以帮助他们在新的转型期内,能够快人一步. ...
- 新加坡金融科技节 | 蚂蚁金服CTO程立:面向全球开放,与合作伙伴共赢
小蚂蚁说: 11月13日,在新加坡金融科技节上,蚂蚁金服CTO程立分别从TechFin.BASIC战略.SOFAStack全栈分布式体系以及全面开放等方面讲述蚂蚁金融科技. TechFin是一种“倒立 ...
- 阿里云启动视频云V5计划,全面赋能生态合作伙伴
9月25 - 27日,主题为数·智的2019云栖大会在杭州举行.在第三天的智能视频云专场中,阿里云研究员金戈首次对外发布视频云V5计划,释放视频IT基础设施红利,赋能生态合作伙伴,共促大视频产业发展. ...
- 阿里云合作伙伴峰会SaaS加速器专场 | 商业加持,迈进亿元俱乐部
导语:本文中,阿里云智能运营专家朱以军从宏观角度分析了SaaS市场的机遇和挑战,重点介绍了阿里云的商业操作系统.同时,阿里云SaaS加速器也在招募更多ISV合作伙伴和我们一起共创专注面向未来的应用,用 ...
- 华清远见成为ARM大学计划正式合作伙伴
来源:华清远见嵌入式学院 近日,华清远见教育集团成为ARM大学计划合作伙伴,这是ARM大学计划合作伙伴中的国内唯一教育机构.此次合作是ARM公司对华清远见教育集团的高度认可,也充分证明了华清远见这些年 ...
- 让我们共同构筑物联网起飞的平台:物联网操作系统Hello China寻求应用合作伙伴
经过几天的努力,终于把Hello China V1.76版的内核移植到基于Cortex-M3内核的STM32 chipset上.因为还希望进一步写一个USART驱动程序,因此详细的移植文档,预计一周之 ...
- To be better —msup荣获平安科技“2018年度优秀合作伙伴”称号
2018年12月4日,平安科技在深圳平安金融中心举办了“2018年平安科技优秀培训合作伙伴交流会”,msup收到了邀请参与此次评选,并从80余家合作伙伴中脱颖而出,在交付量.满意度.师资内容.服务水准 ...
- 灵雀云率先成为 Linux 基金会/CNCF官方认证培训合作伙伴
近日,灵雀云Alauda成为Linux基金会/CNCF授权培训伙伴项目( Linux Foundation Authorized Training Partner Program,以下简称ATP)在国 ...
- 微软 WPC 2014 合作伙伴keynote
本周一,2014 微软WPC (Worldwide Partner Conference) 合作者伙伴大会在美国华盛顿开幕,微软除了介绍了Azure.云端化的Office 365和Windows Ph ...
- Exchange2016 & Skype for business 集成之一配置合作伙伴应用程序
准备条件 为Skype for Business Server和Exchange Server之间建立服务器到服务器的身份验证,您必须做两件事:1)您必须为每台服务器分配合适的证书(详细参考文档htt ...
随机推荐
- 【01】微服务(Microservice)是什么?为什么会出现微服务?
微服务(Microservice)虽然是当下刚兴起的比较流行的新名词,但本质上来说,微服务并非什么新的概念. 实际上,很多 SOA(面向服务的架构)实施成熟度比较好的企业,已经在使用和实施微服务了.只 ...
- 《c#高级编程》第3章C#3.0中的更改(五)——扩展方法
C#扩展方法是一种语法,可以为已有的类添加新的实例方法,而无需修改原来的类定义.它的语法形式为: ```csharppublic static void MyExtensionMethod(this ...
- win10更新后使用ie浏览器自动跳转edge的解决方法
win10更新后使用ie浏览器自动跳转edge的解决方法 ①在系统的搜索框中搜索internet选项 ②打开界面中,选择高级的栏位 ③然后在红框的地方找到启用第三方浏览器扩展,去掉勾选 ④应用,确定, ...
- 一文详解用eBPF观测HTTP
简介: 随着eBPF推出,由于具有高性能.高扩展.安全性等优势,目前已经在网络.安全.可观察等领域广泛应用,同时也诞生了许多优秀的开源项目,如Cilium.Pixie等,而iLogtail 作为阿里内 ...
- 有赞 Flink 实时任务资源优化探索与实践
简介: 目前有赞实时计算平台对于 Flink 任务资源优化探索已经走出第一步. 随着 Flink K8s 化以及实时集群迁移完成,有赞越来越多的 Flink 实时任务运行在 K8s 集群上,Flink ...
- 每次都需要解释大量指令?使用 PolarDB-X 向量化引擎
简介: 向量化引擎为PolarDB-X的表达式计算带来了显著的性能提升. 介绍 PolarDB-X是阿里巴巴自研的云原生分布式数据库,采用了计算-存储分离的架构,其中计算节点承担着大量的表达式计算任务 ...
- 春色满园关不住,带你体验阿里云 Knative
简介: Knative 是基于 Kubernetes 的开源 Serverless 应用编排框架.阿里云 Knative 在社区Knative基础之上,与阿里云产品进行了深度的融合,给你带来最纯粹的容 ...
- ARM 反汇编速成
1.跳转指令 B 无条件跳转 BL 带链接的无条件跳转 BX 带状态切换的无条件跳转 BLX 带链接和状态切换的无条件跳转 B loc_地址 BNE, BEQ 2.存储器与寄存器交互数据指令 ...
- WPF 推荐一个剪贴板内容查看工具
本文来安利大家一个好用的 Windows 剪贴板的内容查看工具 这是在 GitHub 上完全免费开源的应用,由 walterlv 开发的应用,详细请看 https://github.com/walte ...
- 深入浅出玩转fPGA-读书笔记
笔记1 关于异步复位同步释放的理解 先看代码: 其中有两个always语句,把2个触发器叠加,当按下复位信号rst_n是,两个触发器都复位(清零).当rst_n释放时,重点就来了,rst_n释放的时刻 ...