CF1175F The Number of Subpermutations
题意
给出一个长度为\(n\)的序列\(a\),问有多少个区间\([l,r]\)满足:在区间\([l,r]\)内,\([1,r-l+1]\)的每个整数都恰好出现了一次。
\(n \le 3 \times 10 ^ 5\),\(a_i \le n\)
思路
可以发现,其实最后的答案一定不会很大。
所以:暴力出奇迹!!!
先对题意进行小小的转化,题目等价于问有多少个区间\([l,r]\)满足以下两个条件:
1.区间\([l,r]\)中的每个数字都只在区间\([l,r]\)中出现了一遍
2.\(max\{a_l,a_{l+1}...a_r\}=r-l + 1\)
首先只考虑条件一
从后往前扫这个序列。用\(nxt_i\)表示在满足每个数字只出现一遍的前提下,以i为左端,右端点最靠右的位置。(感性理解,我也不知道该咋表述了233.)换句话说,就是\([i,nxt_i - 1]\)这个区间是满足条件的,而\([i,nxt_i]\)是不满足条件的。用\(pos_i\)表示i这个数字上次出现的位置。那么就有\(nxt_i = min(nxt_{i+1},pos[a_i])\)
在上面的基础上,找满足第二个条件的区间
在当前区间左端点为l的情况下,右端点可以是\([l,nxt_l-1]\)。
直接枚举肯定爆炸。
从左到右枚举右端点r,
当找到满足条件的区间时,就把答案加上1。然后继续枚举
如果当前枚举的区间不符合条件时,也就是说\(l+max\{a_l,a_{l+1}...a_r\} > r\)时。那么从r到\(l+max\{a_l,a_{l+1}...a_r\}\)肯定也是不满足条件的,所以直接把\(r\)调到\(l+max\{a_l,a_{l+1}...a_r\}\)就行了。
然后就可以跑过去这道题了(似乎还蛮快的233)。
代码
/*
* @Author: wxyww
* @Date: 2019-06-06 15:53:44
* @Last Modified time: 2019-06-06 16:36:31
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 300000 + 100;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int tree[N << 2];
int a[N];
void build(int rt,int l,int r) {
if(l == r) {
tree[rt] = a[l];return;
}
int mid = (l + r) >> 1;
build(rt << 1,l,mid);
build(rt << 1 | 1,mid + 1,r);
tree[rt] = max(tree[rt << 1],tree[rt << 1 | 1]);
}
int query(int rt,int l,int r,int L,int R) {
if(L <= l && R >= r) return tree[rt];
int mid = (l + r) >> 1;
int ret = 0;
if(L <= mid) ret = max(ret,query(rt << 1,l,mid,L,R));
if(R > mid) ret = max(ret,query(rt << 1 | 1,mid + 1,r,L,R));
return ret;
}
int nxt[N],pos[N],n;
int main() {
n = read();
for(int i = 1;i <= n;++i) a[i] = read(),pos[i] = n + 1;
build(1,1,n);
int ans = 0;
nxt[n + 1] = n + 1;
for(int i = n;i >= 1;--i) {
nxt[i] = min(pos[a[i]],nxt[i + 1]);
pos[a[i]] = i;
for(int j = i;j < nxt[i];++j) {
int x = query(1,1,n,i,j);
if(i + x - 1 > j) j = i + x - 2;else ++ans;
}
}
cout<<ans;
return 0;
}
CF1175F The Number of Subpermutations的更多相关文章
- Codeforces 1175F The Number of Subpermutations
做法①:RMQ(预处理NLOGN+后续跳跃蜜汁复杂度) 满足题意的区间的条件转换: 1.长度为R-L+1则最大值也为R-L+1 2.区间内的数不重复 当RMQ(L,R)!=R-L+1时 因为已经保证了 ...
- Codeforces 1175F The Number of Subpermutations (思维+rmq)
题意: 求区间[l, r]是一个1~r-l+1的排列的区间个数 n<=3e5 思路: 如果[l,r]是一个排列,首先这里面的数应该各不相同,然后max(l,r)应该等于r-l+1,这就能唯一确定 ...
- Codeforces 1175F - The Number of Subpermutations(线段树+单调栈+双针/分治+启发式优化)
Codeforces 题面传送门 & 洛谷题面传送门 由于这场的 G 是道毒瘤题,蒟蒻切不动就只好来把这场的 F 水掉了 看到这样的设问没人想到这道题吗?那我就来发篇线段树+单调栈的做法. 首 ...
- JavaScript Math和Number对象
目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...
- Harmonic Number(调和级数+欧拉常数)
题意:求f(n)=1/1+1/2+1/3+1/4-1/n (1 ≤ n ≤ 108).,精确到10-8 (原题在文末) 知识点: 调和级数(即f(n))至今没有一个完全正确的公式, ...
- Java 特定规则排序-LeetCode 179 Largest Number
Given a list of non negative integers, arrange them such that they form the largest number. For exam ...
- Eclipse "Unable to install breakpoint due to missing line number attributes..."
Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...
- 移除HTML5 input在type="number"时的上下小箭头
/*移除HTML5 input在type="number"时的上下小箭头*/ input::-webkit-outer-spin-button, input::-webkit-in ...
- iOS---The maximum number of apps for free development profiles has been reached.
真机调试免费App ID出现的问题The maximum number of apps for free development profiles has been reached.免费应用程序调试最 ...
随机推荐
- Azure DevOps Server(TFS) 客户端分析
Azure DevOps Server(TFS) 是微软公司的软件协作开发管理平台产品,为软件研发.测试.实施提供全流程的服务.作为一款应用服务器产品,他的客户端是什么,在哪里下载客户端?我们在项目实 ...
- 【django json.dumps 报错】 datetime.datetime is not JSON serializable
django 中,json.dumps 无法直接转译 datetime 类型的值. 找了无数方法,找到一个最优.最简洁的解决办法: json.dumps(results, indent=4, sort ...
- antd模块组件文档思维导图整理
- 大话设计模式Python实现-工厂方法模式
工厂方法模式(Factory Method Pattern):定义一个用于创建对象的接口,让子类决定实例化哪一个类,工厂方法使一个类的实例化延时到其子类. #!/usr/bin/env python ...
- UVA 10790 How Many Points of Intersection? 组合数学
We have two rows. There are a dots on the top row and b dots on the bottom row. We draw line segment ...
- 分布式应用的未来 — Distributionless
作者丨阿里云高级技术专家 至简(李云) 在技术变革推动社会发展这一时代背景下,大量支撑规模化分布式应用的技术创新.创造与创业应用而生,Could Native.Service Mesh.Serverl ...
- MySQL基础(二)(约束以及修改数据表)
一,约束以及修改数据表 约束的作用?1.约束保证数据的完整性.一致性:2.约束分为表级约束.列级约束:3.约束类型包括:NOT NULL(非空约束).PRIMARY KEY(主键约束).UNIQUE ...
- docker 安装与基本命令
安装 Install Docker for Linux Download Docker for Mac Install Docker for Windows 镜像是docker三大核心概念中最重要的. ...
- ios路线
http://www.cocoachina.com/ios/20150303/11218.html
- vue -全局组件和局部组件
1.全局组件:Vue.component('标签名', 构造器名) Vue.component('mycpn', cpnC) 注:这种注册组件的方式是全局组件,可以在多个Vue实例中使用. 2.局部组 ...