题目链接

题意

给出一个长度为\(n\)的序列\(a\),问有多少个区间\([l,r]\)满足:在区间\([l,r]\)内,\([1,r-l+1]\)的每个整数都恰好出现了一次。

\(n \le 3 \times 10 ^ 5\),\(a_i \le n\)

思路

可以发现,其实最后的答案一定不会很大。

所以:暴力出奇迹!!!

先对题意进行小小的转化,题目等价于问有多少个区间\([l,r]\)满足以下两个条件:

1.区间\([l,r]\)中的每个数字都只在区间\([l,r]\)中出现了一遍

2.\(max\{a_l,a_{l+1}...a_r\}=r-l + 1\)

首先只考虑条件一

从后往前扫这个序列。用\(nxt_i\)表示在满足每个数字只出现一遍的前提下,以i为左端,右端点最靠右的位置。(感性理解,我也不知道该咋表述了233.)换句话说,就是\([i,nxt_i - 1]\)这个区间是满足条件的,而\([i,nxt_i]\)是不满足条件的。用\(pos_i\)表示i这个数字上次出现的位置。那么就有\(nxt_i = min(nxt_{i+1},pos[a_i])\)

在上面的基础上,找满足第二个条件的区间

在当前区间左端点为l的情况下,右端点可以是\([l,nxt_l-1]\)。

直接枚举肯定爆炸。

从左到右枚举右端点r,

当找到满足条件的区间时,就把答案加上1。然后继续枚举

如果当前枚举的区间不符合条件时,也就是说\(l+max\{a_l,a_{l+1}...a_r\} > r\)时。那么从r到\(l+max\{a_l,a_{l+1}...a_r\}\)肯定也是不满足条件的,所以直接把\(r\)调到\(l+max\{a_l,a_{l+1}...a_r\}\)就行了。

然后就可以跑过去这道题了(似乎还蛮快的233)。

代码

/*
* @Author: wxyww
* @Date: 2019-06-06 15:53:44
* @Last Modified time: 2019-06-06 16:36:31
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 300000 + 100;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int tree[N << 2];
int a[N];
void build(int rt,int l,int r) {
if(l == r) {
tree[rt] = a[l];return;
}
int mid = (l + r) >> 1;
build(rt << 1,l,mid);
build(rt << 1 | 1,mid + 1,r);
tree[rt] = max(tree[rt << 1],tree[rt << 1 | 1]);
}
int query(int rt,int l,int r,int L,int R) {
if(L <= l && R >= r) return tree[rt];
int mid = (l + r) >> 1;
int ret = 0;
if(L <= mid) ret = max(ret,query(rt << 1,l,mid,L,R));
if(R > mid) ret = max(ret,query(rt << 1 | 1,mid + 1,r,L,R));
return ret;
}
int nxt[N],pos[N],n;
int main() {
n = read();
for(int i = 1;i <= n;++i) a[i] = read(),pos[i] = n + 1;
build(1,1,n);
int ans = 0;
nxt[n + 1] = n + 1;
for(int i = n;i >= 1;--i) {
nxt[i] = min(pos[a[i]],nxt[i + 1]);
pos[a[i]] = i;
for(int j = i;j < nxt[i];++j) {
int x = query(1,1,n,i,j);
if(i + x - 1 > j) j = i + x - 2;else ++ans;
}
}
cout<<ans;
return 0;
}

CF1175F The Number of Subpermutations的更多相关文章

  1. Codeforces 1175F The Number of Subpermutations

    做法①:RMQ(预处理NLOGN+后续跳跃蜜汁复杂度) 满足题意的区间的条件转换: 1.长度为R-L+1则最大值也为R-L+1 2.区间内的数不重复 当RMQ(L,R)!=R-L+1时 因为已经保证了 ...

  2. Codeforces 1175F The Number of Subpermutations (思维+rmq)

    题意: 求区间[l, r]是一个1~r-l+1的排列的区间个数 n<=3e5 思路: 如果[l,r]是一个排列,首先这里面的数应该各不相同,然后max(l,r)应该等于r-l+1,这就能唯一确定 ...

  3. Codeforces 1175F - The Number of Subpermutations(线段树+单调栈+双针/分治+启发式优化)

    Codeforces 题面传送门 & 洛谷题面传送门 由于这场的 G 是道毒瘤题,蒟蒻切不动就只好来把这场的 F 水掉了 看到这样的设问没人想到这道题吗?那我就来发篇线段树+单调栈的做法. 首 ...

  4. JavaScript Math和Number对象

    目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...

  5. Harmonic Number(调和级数+欧拉常数)

    题意:求f(n)=1/1+1/2+1/3+1/4-1/n   (1 ≤ n ≤ 108).,精确到10-8    (原题在文末) 知识点:      调和级数(即f(n))至今没有一个完全正确的公式, ...

  6. Java 特定规则排序-LeetCode 179 Largest Number

    Given a list of non negative integers, arrange them such that they form the largest number. For exam ...

  7. Eclipse "Unable to install breakpoint due to missing line number attributes..."

    Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...

  8. 移除HTML5 input在type="number"时的上下小箭头

    /*移除HTML5 input在type="number"时的上下小箭头*/ input::-webkit-outer-spin-button, input::-webkit-in ...

  9. iOS---The maximum number of apps for free development profiles has been reached.

    真机调试免费App ID出现的问题The maximum number of apps for free development profiles has been reached.免费应用程序调试最 ...

随机推荐

  1. Azure DevOps Server(TFS) 客户端分析

    Azure DevOps Server(TFS) 是微软公司的软件协作开发管理平台产品,为软件研发.测试.实施提供全流程的服务.作为一款应用服务器产品,他的客户端是什么,在哪里下载客户端?我们在项目实 ...

  2. 【django json.dumps 报错】 datetime.datetime is not JSON serializable

    django 中,json.dumps 无法直接转译 datetime 类型的值. 找了无数方法,找到一个最优.最简洁的解决办法: json.dumps(results, indent=4, sort ...

  3. antd模块组件文档思维导图整理

  4. 大话设计模式Python实现-工厂方法模式

    工厂方法模式(Factory Method Pattern):定义一个用于创建对象的接口,让子类决定实例化哪一个类,工厂方法使一个类的实例化延时到其子类. #!/usr/bin/env python ...

  5. UVA 10790 How Many Points of Intersection? 组合数学

    We have two rows. There are a dots on the top row and b dots on the bottom row. We draw line segment ...

  6. 分布式应用的未来 — Distributionless

    作者丨阿里云高级技术专家 至简(李云) 在技术变革推动社会发展这一时代背景下,大量支撑规模化分布式应用的技术创新.创造与创业应用而生,Could Native.Service Mesh.Serverl ...

  7. MySQL基础(二)(约束以及修改数据表)

    一,约束以及修改数据表 约束的作用?1.约束保证数据的完整性.一致性:2.约束分为表级约束.列级约束:3.约束类型包括:NOT NULL(非空约束).PRIMARY KEY(主键约束).UNIQUE ...

  8. docker 安装与基本命令

    安装 Install Docker for Linux Download Docker for Mac Install Docker for Windows 镜像是docker三大核心概念中最重要的. ...

  9. ios路线

    http://www.cocoachina.com/ios/20150303/11218.html

  10. vue -全局组件和局部组件

    1.全局组件:Vue.component('标签名', 构造器名) Vue.component('mycpn', cpnC) 注:这种注册组件的方式是全局组件,可以在多个Vue实例中使用. 2.局部组 ...