Acwing P284 金字塔 题解
Analysis
一棵树的每颗子树都对应着这棵树 DFS 序的一个区间。本题的序列虽然不是 DFS 序列,但也有该性质。本题中,我们以区间长度作为阶段, F[ l , r ] 表示序列 s[ l ~ r ]中子树的个数。
如果我们从 l 到 r 在每一个点划分一个 k ,那么时间复杂度会很高。一个比较好的想法是,把子串s[ l ~ r ]分成两部分,每部分可由若干子树构成。为了计数重而不漏,我们只考虑子串的第一颗子树是由哪些序列构成的,即令子串s[ l+1 ~ k-1 ] 构成第一棵子树,s[ k~r ]构成剩余部分。
为什么这样不会重复呢?因为我们 k 不断向后移动,序列不断加长,也就是说第一颗子树规模在从小变大,当然不会重复;至于剩下部分构成的子树,同理,由于规模不断减小,不可能重复。
为什么还要加上一个F[ l + 1 , r - 1] 呢?因为我们虽然枚举了第一颗子树,但是却忽略了该树只有一颗子树的情况,所以需要再加上这种情况,即F[ l + 1 , r - 1 ]。
对于方案计数类的动态规划问题,通常一个状态的各个决策之间满足“加法原理”,而每个决策划分的几个子状态之间满足“乘法原理”。在设计状态转移方程的决策方式与划分方法时,一个状态的所有决策之间必须具有互斥性,才能保证不会出现重复问题。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#define int long long
#define maxn 300+10
#define mod 1000000000
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int len;
int dp[maxn][maxn];
char s[maxn];
inline int DP(int l,int r)
{
if(l>r) return ;
if(s[l]!=s[r]) return ;
if(l==r) return ;
if(dp[l][r]!=-) return dp[l][r];
dp[l][r]=;
for(int k=l+;k<=r-;k++)
{
dp[l][r]=dp[l][r]+(DP(l+,k)*DP(k+,r))%mod;
dp[l][r]%=mod;
}
return dp[l][r];
}
signed main()
{
// freopen("pyramid.in","r",stdin);
// freopen("pyramid.out","w",stdout);
memset(dp,-,sizeof(dp));
scanf("%s",s+);
len=strlen(s+);
int ans=DP(,len);
ans%=mod;
write(ans);
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
Acwing P284 金字塔 题解的更多相关文章
- Acwing P283 多边形 题解
Analysis 总体来说是一个区间DP 此题首先是一个环,要你进行删边操作,剩下的在经过运算得到一个最大值 注意事项: 1.删去一条边,剩下的构成一条线,相当于求此的最大值,经典区间DP该有的样子: ...
- Acwing P277 饼干 题解
每日一题 day20 打卡 Analysis 线型动态规划 读入每个人的贪婪度之后,对其按照从大到小的顺序排序,定义状态f[i][j]为前i个人(排序后)分j个饼干的答案,那么答案为f[n][m],考 ...
- AcWing P379 捉迷藏 题解
Analysis 这道题因为我们要给能到达的两个点都连上,又由于n<=200,所以我们可以用n³的传递闭包来建边,再用匈牙利算法来求二分图最大点独立集. #include<iostream ...
- AcWing 走廊泼水节 题解
这道题大致题意就是让一棵树任意两点有连边(也就是完全图),但是补完后最小生成树是一开始的那棵树,问最小加的边权之和是多少. 了解题意后,我们可以想到用Kruskal(废话),当每两个集合合并的时候,除 ...
- csp-s 考前刷题记录
洛谷 P2615 神奇的幻方 洛谷 P2678 跳石头 洛谷 P1226 [模板]快速幂||取余运算 洛谷 P2661 信息传递 LOJ P10147 石子合并 LOJ P10148 能量项链 LOJ ...
- AcWing 785.快速排序
AcWing 785.快速排序题解 题目描述 给定你一个长度为n的整数数列. 请你使用快速排序对这个数列按照从小到大进行排序. 并将排好序的数列按顺序输出. 输入格式 输入共两行,第一行包含整数 n. ...
- 【题解】AcWing 110. 防晒(普及题)
[题解]AcWing 110. 防晒(普及题) AcWing 110. 防晒 你没有用过的全新OJ 嘿嘿水水题. 题目就是一维坐标轴上给定多个线段,给定多个点,点在线段上造成贡献,点可以重复,问最大贡 ...
- Acwing P288 休息时间 题解
Analysis 首先假设一天的第N小时与后一天的第一个小时不相连, 这种情况下DP转移比较好想 dp[i][j][0/1]dp[i][j][0/1]表示 考虑一天的前i个小时,已经休息了j小时,且第 ...
- Acwing P274 移动服务 题解
每日一题 day21 打卡 Analysis DP的状态为已经完成的请求数量,通过指派一位服务员可以把”完成i - 1个请求的状态”转移到”完成i个请求的状态”那么我们可以知道转移从dp[i - 1] ...
随机推荐
- laravel中一些非常常用的php artisan命令
php artisan 命令在开发laravel项目中非常常用,下面是一些总结 composer config -g repo.packagist composer https://mirrors.a ...
- Dubbo快速入门 一
1.分布式基础理论 1.1).什么是分布式系统? “分布式系统是若干独立计算机的集合,这些计算机对于用户来说就像单个相关系统” 分布式系统(distributed system)是建立在网络之上的软件 ...
- nginx1.14.0版本location路径,多级文件目录配置,root与alias的配置区别
1.多级目录配置 多级目录是指像/html/mypage 等等配置: server { listen 80; server_name localhost; location = /page1/ { # ...
- 【洛谷 P4302】 [SCOI2003]字符串折叠(DP)
题目链接 简单区间dp 令\(f[i][j]\)表示\([i,j]\)的最短长度 先枚举区间,然后在区间中枚举长度\(k\),看这个区间能不能折叠成几个长度为\(k\)的,如果能就更新答案. #inc ...
- Sqlite in flutter, how database assets work
First off, you will need to construct a sqlite database from your csv. This can be done in the follo ...
- Java NIO和IO的区别
下表总结了Java NIO和IO之间的主要差别,我会更详细地描述表中每部分的差异. 复制代码 代码如下: IO NIO面向流 面向缓冲阻塞IO 非阻塞IO无 选择器 面向流与面向缓冲 Java NIO ...
- HTML的基本概念
HTML语言是一种纯文本类.依靠解释的方式执行的标记语言,它是Internet上用于编写网页的主要语言.用HTML编写的超文本文件称为HTML文件,也是标准的纯文本文件. 当今构成网页文档主要是用HT ...
- 使用HBuilderX打包成app之后点击返回按钮让它返回上一个页面
首先:下载引入mui.min.js文件,MUI框架mui-min.js文件github地址 https://github.com/dcloudio/mui 下载之后并在index.html文件中引入如 ...
- Awesome Mac OS Command Line 中文翻译
awesome-macos-command-line 收集了很多有趣的 Mac 终端命令. 看了一遍后,发现帮助很大. 见识许多没有使用过的命令,加深了对 Mac 的认识. 所以翻译成了中文,共享给其 ...
- sql 树形递归查询
sql 树形递归查询: with ProductClass(ClassId,ClassName) as ( union all select c.ClassId,c.ClassName from Cl ...