LG4074【WC2013】糖果公园 【树上莫队,带修莫队】
题目描述:给出一棵 \(n\) 个点的树,点有颜色 \(C_i\),长度为 \(m\) 的数组 \(V\) 和长度为 \(n\) 的数组 \(W\)。有两种操作:
将 \(C_x\) 修改为 \(y\)。
求 \(u\) 到 \(v\) 的链的 \(\sum\limits_{i=1}^m\sum\limits_{j=1}^{cnt_i}W_j\),其中 \(cnt_i\) 表示颜色 \(i\) 的出现次数。
数据范围:\(n,m\le 10^5,1\le C_i\le m\),时限6s(洛谷)或8s(UOJ)。
这是树上带修莫队的模板题。
首先我们看树分块怎么做,所以要来先做这道题。
直接讲做法了:我们是尽可能在底层把大小 \(\ge B\) 的联通块作为一块,剩下的扔给父亲合并。就是要开一个stack,维护当前还没有被分块的点。不停递归儿子,一旦已经有一个 \(\ge B\) 的连通块了,就把它们作为一块,设首都为 \(x\)(当前dfs的点)。最后把 \(x\) 放进栈中。最后递归完还要把栈中剩下的点放入最后一个块,并把首都设为 \(1\)。
inline void dfs(int x, int f){
int t = top;
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != f){
dfs(to[i], x);
if(top >= t + B){
rt[++ num] = x;
while(top > t) in[stk[top --]] = num;
}
}
stk[++ top] = x;
}
int main(){
// ...
dfs(1, 0);
if(!num) num = 1;
rt[num] = 1;
while(top) in[stk[top --]] = num;
// ...
}
我们知道没有合并,即大小 \(<B\),合并之后 \(<2B\)。就算最后一个连通块也至多有 \(<3B\),所以是比较均匀的。
然后我们看看如何从链 \((u,v)\) 变为 \((u',v')\) 并且时间复杂度为 \(O(\text{len}(u,u')+\text{len}(v,v'))\)。
首先我们改为维护 \((u,v)\) 中抠掉 \(lca\) 的答案,\(cnt\) 和每个点是否在里面的 \(vis\)。设 \(L(u,v)\) 为 \(u\) 到 \(v\) 这条链上抠掉 \(lca\) 的点集,\(\oplus\) 为集合对称差(\(A\oplus B=(A\cup B)-(A\cap B)\)),\(S(u)\) 为 \(1\) 到 \(u\) 的这条链的点集。则 \(L(u,v)=S(u)\oplus S(v)\),且集合对称差肯定是有交换、结合律的。
L(u',v')&=L(u',v')\oplus L(u,v)\oplus L(u,v) \\
&=S(u')\oplus S(v')\oplus S(u)\oplus S(v)\oplus S(u) \oplus S(v) \\
&=(S(u')\oplus S(u))\oplus(S(v)\oplus S(v'))\oplus(S(u)\oplus S(v)) \\
&=L(u,u')\oplus L(v,v')\oplus L(u,v)
\end{aligned}
\]
于是就直接是将 \(L(u,u')\) 和 \(L(v,v')\) 全部 \(vis\) 取反就是 \(L(u',v')\),然后把 \(lca\) 取反就是 \(u'\) 到 \(v'\) 这条链。
至于带修莫队怎么做,就去看这道题。取 \(B\) 比 \(n^\frac{2}{3}\) 少一点点就可以,时间复杂度 \(O(n^\frac{5}{3}+n\log n)\)。
code
```cpp
#include
#define Rint register int
using namespace std;
typedef long long LL;
const int N = 100003;
int n, m, B, q, ql, qr, qnow, qnum, cnum, V[N], W[N], C[N], head[N], to[N siz[wson[x]]) wson[x] = to[i];
if(tp >= tmp + B){
++ bnum;
while(tp > tmp) bel[stk[tp --]] = bnum;
}
}
stk[++ tp] = x;
}
inline void dfs2(int x, int topf){
top[x] = topf;
if(wson[x]) dfs2(wson[x], topf);
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != wson[x] && to[i] != fa[x])
dfs2(to[i], to[i]);
}
inline int lca(int u, int v){
while(top[u] != top[v]){
if(dep[top[u]] dep[v]){work(u); u = fa[u];}
while(u != v){work(u); u = fa[u]; work(v); v = fa[v];}
}
inline void change(int i){
int u = cha[i].u;
if(vis[u]){
work(u); swap(C[u], cha[i].val); work(u);
} else swap(C[u], cha[i].val);
}
int main(){
scanf("%d%d%d", &n, &m, &q); B = pow(n, 2.0 / 3);
for(Rint i = 1;i que[i].tim) change(qnow --);
int LCA = lca(tl, tr);
work(LCA); ans[que[i].id] = qans; work(LCA);
}
for(Rint i = 1;i
LG4074【WC2013】糖果公园 【树上莫队,带修莫队】的更多相关文章
- BZOJ3052/UOJ#58 [wc2013]糖果公园 莫队 带修莫队 树上莫队
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3052.html 题目传送门 - BZOJ3052 题目传送门 - UOJ#58 题意 给定一棵树,有 ...
- BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)
题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...
- luogu4074 [WC2013]糖果公园(树上带修莫队)
link 题目大意:给一个树,树上每个点都有一种颜色,每个颜色都有一个收益 每次修改一个点上的颜色 或询问一条链上所有颜色第i次遇到颜色j可以获得w[i]*v[j]的价值,求链上价值和 题解:树上带修 ...
- LUOGU P4074 [WC2013]糖果公园 (树上带修莫队)
传送门 解题思路 树上带修莫队,搞了两天..终于开O2+卡常大法贴边过了...bzoj上跑了183s..其实就是把树上莫队和带修莫队结合到一起,首先求出括号序,就是进一次出一次那种的,然后如果求两个点 ...
- BZOJ2120 数颜色 莫队 带修莫队
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2120.html 题目传送门 - BZOJ2120 题意 给定一个长度为 $n$ 的序列 $a$ ,有 ...
- P4074 [WC2013]糖果公园 树上莫队带修改
题目链接 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 nn 个游览点构 ...
- BZOJ3052:[WC2013]糖果公园(树上莫队)
Description Input Output Sample Input 4 3 51 9 27 6 5 12 33 13 41 2 3 21 1 21 4 20 2 11 1 21 4 2 Sam ...
- BZOJ 3052: [wc2013]糖果公园 | 树上莫队
题目: UOJ也能评测 题解 请看代码 #include<cstdio> #include<algorithm> #include<cstring> #includ ...
- 【Luogu P4074】[WC2013]糖果公园(树上带修改莫队)
题目描述 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 \(n\) 个游 ...
随机推荐
- win7安装镜像注入USB3.0,NVMe驱动
现在的新款主板和笔记本因为原生自带了USB3.0和NVMe,在安装WIN7的时候会出现进入安装界面后不识别USB设备且在硬盘列表中无法读取M.2类型的固态硬盘信息.导致这个现象的原因就是在WIN7安装 ...
- C# IEnumerable接口
问: 集合很好用,而且非常简单,但是我不明白 为什么数组.ArrayList 和 Hasttable 这些集合都能用foreach直接遍历呢?我想自己定义一个集合类,应该怎么做呢? 回答:这个问题问的 ...
- 2019 波克城市ava面试笔试题 (含面试题解析)
本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.波克城市等公司offer,岗位是Java后端开发,最终选择去了波克城市. 面试了很多家公司,感觉大部分公司考察的点 ...
- SpringBoot启动原理详解
SpringBoot和Spring相比,有着不少优势,比如自动配置,jar直接运行等等.那么SpringBoot到底是怎么启动的呢? 下面是SpringBoot启动的入口: @SpringBootAp ...
- js判断数组中是否有重复元素
方法一:正则 var ary = new Array("111","ff","222","aa","222&q ...
- SpringMVC+SpringBoot+MyBatis
一.在框架中有时候会发现dao层和service层是相同的代码,为什么会同时存在呢?(以下https://blog.csdn.net/fanjieshanghai/article/details/88 ...
- I2C总线
PHILIPS公司开发的两线式串行总线 GPIO模拟i2c驱动中有自己的一套传输算法.GPIO模拟I2C是要占用CPU资源的,而用I2C芯片是不占CPU资源的 特点 接口线少,控制方式简单,器件封装形 ...
- C# winform 托盘控件的使用
从工具栏里,把NotifyIcon控件拖到窗体上,并设置属性: 1.visible 设置默认为FALSE: 2.Image 选一张图片为托盘时显示的图样:比如选奥巴马卡通画像: 3.Text 显示: ...
- C++中string的实现原理
C++中string的实现原理 背景 当我刚开始学习C++,对C还是有一部分的了解,所以以C的思维去学C++,导致我很长一段时间的学习都处于一个懵逼的状态,C++的各种特性,标准库,模板还有版本的迭代 ...
- NFS服务启动:rpc.nfsd: writing fd to kernel failed: errno 111 (Connection refused)
nfs重启时提示: rpc.nfsd: writing fd to kernel failed: errno 111 (Connection refused) 解决办法: 1 #service rpc ...