Vision layers

1)Upsample

CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)

上采样一个给定的多通道的 1D (temporal,如向量数据), 2D (spatial,如jpg、png等图像数据) or 3D (volumetric,如点云数据)数据
假设输入数据的格式为minibatch x channels x [optional depth] x [optional height] x width。因此对于一个空间spatial输入,我们期待着4D张量的输入,即minibatch x channels x height x width。而对于体积volumetric输入,我们则期待着5D张量的输入,即minibatch x channels x depth x height x width

对于上采样有效的算法分别有对 3D, 4D和 5D 张量输入起作用的 最近邻、线性,、双线性, 双三次(bicubic)和三线性(trilinear)插值算法

你可以给定scale_factor来指定输出为输入的scale_factor倍或直接使用参数size指定目标输出的大小(但是不能同时制定两个)

参数:

  • size (int or Tuple[int] or Tuple[intint] or Tuple[intintint]optional) – 根据不同的输入类型制定的输出大小

  • scale_factor (float or Tuple[float] or Tuple[floatfloat] or Tuple[floatfloatfloat]optional) – 指定输出为输入的多少倍数。如果输入为tuple,其也要制定为tuple类型

  • mode (stroptional) – 可使用的上采样算法,有'nearest''linear''bilinear''bicubic' and 'trilinear'. 默认使用'nearest'

  • align_corners (booloptional) – 如果为True,输入的角像素将与输出张量对齐,因此将保存下来这些像素的值。仅当使用的算法为'linear''bilinear'or 'trilinear'时可以使用。默认设置为False

输入输出形状:

注意:

当align_corners = True时,线性插值模式(线性、双线性、双三线性和三线性)不按比例对齐输出和输入像素,因此输出值可以依赖于输入的大小。这是0.3.1版本之前这些模式的默认行为。从那时起,默认行为是align_corners = False,如下图:

上面的图是source pixel为4*4上采样为target pixel为8*8的两种情况,这就是对齐和不对齐的差别,会对齐左上角元素,即设置为align_corners = True时输入的左上角元素是一定等于输出的左上角元素。但是有时align_corners = False时左上角元素也会相等,官网上给的例子就不太能说明两者的不同(也没有试出不同的例子,大家理解这个概念就行了)

如果您想下采样/常规调整大小,您应该使用interpolate()方法,这里的上采样方法已经不推荐使用了。

举例:

import torch
from torch import nn
input = torch.arange(, , dtype=torch.float32).view(, , , )
input

返回:

tensor([[[[., .],
[., .]]]])
m = nn.Upsample(scale_factor=, mode='nearest')
m(input)

返回:

tensor([[[[., ., ., .],
[., ., ., .],
[., ., ., .],
[., ., ., .]]]])
m = nn.Upsample(scale_factor=, mode='bilinear',align_corners=False)
m(input)

返回:

tensor([[[[1.0000, 1.2500, 1.7500, 2.0000],
[1.5000, 1.7500, 2.2500, 2.5000],
[2.5000, 2.7500, 3.2500, 3.5000],
[3.0000, 3.2500, 3.7500, 4.0000]]]])
m = nn.Upsample(scale_factor=, mode='bilinear',align_corners=True)
m(input)

返回:

tensor([[[[1.0000, 1.3333, 1.6667, 2.0000],
[1.6667, 2.0000, 2.3333, 2.6667],
[2.3333, 2.6667, 3.0000, 3.3333],
[3.0000, 3.3333, 3.6667, 4.0000]]]])
m = nn.Upsample(size=(,), mode='bilinear',align_corners=True)
m(input)

返回:

tensor([[[[1.0000, 1.2500, 1.5000, 1.7500, 2.0000],
[2.0000, 2.2500, 2.5000, 2.7500, 3.0000],
[3.0000, 3.2500, 3.5000, 3.7500, 4.0000]]]])

如果你使用的数据都是JPG等图像数据,那么你就能够直接使用下面的用于2D数据的方法:

2)UpsamplingNearest2d

CLASS torch.nn.UpsamplingNearest2d(size=None, scale_factor=None)

专门用于2D数据的线性插值算法,参数等跟上面的差不多,省略

形状:

举例:

m = nn.UpsamplingNearest2d(scale_factor=)
m(input)

input即上面例子的input,返回:

tensor([[[[., ., ., .],
[., ., ., .],
[., ., ., .],
[., ., ., .]]]])
m = nn.UpsamplingNearest2d(size=(,))
m(input)

返回:

tensor([[[[., ., ., ., .],
[., ., ., ., .],
[., ., ., ., .]]]])

3)UpsamplingBilinear2d

CLASS torch.nn.UpsamplingBilinear2d(size=None, scale_factor=None)

专门用于2D数据的双线性插值算法,参数等跟上面的差不多,省略

形状:

注意:最好还是使用nn.functional.interpolate(..., mode='bilinear', align_corners=True)

举例:

m = nn.UpsamplingBilinear2d(scale_factor=)
m(input)

返回:

tensor([[[[1.0000, 1.3333, 1.6667, 2.0000],
[1.6667, 2.0000, 2.3333, 2.6667],
[2.3333, 2.6667, 3.0000, 3.3333],
[3.0000, 3.3333, 3.6667, 4.0000]]]])
m = nn.UpsamplingBilinear2d(size=(,))
m(input)

返回:

tensor([[[[1.0000, 1.2500, 1.5000, 1.7500, 2.0000],
[2.0000, 2.2500, 2.5000, 2.7500, 3.0000],
[3.0000, 3.2500, 3.5000, 3.7500, 4.0000]]]])

更复杂的例子可见:pytorch 不使用转置卷积来实现上采样

pytorch torch.nn 实现上采样——nn.Upsample的更多相关文章

  1. pytorch 不使用转置卷积来实现上采样

    上采样(upsampling)一般包括2种方式: Resize,如双线性插值直接缩放,类似于图像缩放,概念可见最邻近插值算法和双线性插值算法——图像缩放 Deconvolution,也叫Transpo ...

  2. 上采样和PixelShuffle(转)

    有些地方还没看懂, mark一下 文章来源: https://blog.csdn.net/g11d111/article/details/82855946 去年曾经使用过FCN(全卷积神经网络)及其派 ...

  3. pytorch torch.nn.functional实现插值和上采样

    interpolate torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', ali ...

  4. PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx

    PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...

  5. Pytorch——torch.nn.Sequential()详解

    参考:官方文档    源码 官方文档 nn.Sequential A sequential container. Modules will be added to it in the order th ...

  6. 『PyTorch』第十三弹_torch.nn.init参数初始化

    初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进 ...

  7. 上采样 及 Sub-pixel Convolution (子像素卷积)

    参考:https://blog.csdn.net/leviopku/article/details/84975282 参考:https://blog.csdn.net/g11d111/article/ ...

  8. [源码解析] PyTorch 分布式(2) ----- DataParallel(上)

    [源码解析] PyTorch 分布式(2) ----- DataParallel(上) 目录 [源码解析] PyTorch 分布式(2) ----- DataParallel(上) 0x00 摘要 0 ...

  9. 图像的下采样Subsampling 与 上采样 Upsampling

     I.目的 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的: 1.使得图像符合显示区域的大小: 2.生成对应图像的缩略图. 放大图像(或称为上采样(ups ...

随机推荐

  1. mysql存储、function、触发器等实例

    一.创建数据库&表 DROP DATABASE IF EXISTS security; CREATE database security; USE security; CREATE TABLE ...

  2. 麻雀虽小,五脏俱全。基于Asp.net core + Sqlite 5分钟快速上手一个小项目

    虽然该方法不会用在实际开发中,但该过程对于初学者还是非常友好的,真应了麻雀虽小,五脏俱全这句话了.好了不多废话了,直接开始!! 1.建立一个名为test的Asp.net core web应用程序 这一 ...

  3. 自定义创建vue文件代码块

    "vue-component": { "prefix": "vue-component", "body": [ &quo ...

  4. C# 6.0 中的新增功能(.NET Framework 4.6 与 Visual Studio 2015 )

    C#6.0 在 2015 年7月随着.NET Framework 4.6 一同发布,后期发布了.NET Framework 4.6.1,4.6.2. 一.自动属性初始化(Auto-property i ...

  5. 九.Protobuf3特殊类型

    Protobuf3 Any类型 Any消息类型允许您将消息作为嵌入类型,而不需要它们 .proto定义.Any包含任意序列化的消息(字节),以及一个URL,该URL充当该消息的全局唯一标识符并解析为该 ...

  6. MySQL 索引原理及慢查询优化

    MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓“好马配好鞍”,如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会从职位 ...

  7. c-free gcc.exe: cannot specify -o with -c or -S and multiple compilations的解决方法

    win10上打算使用c-free,因为xp win7时代都用过,写c代码还是比较方便的,尤其是5.0版本,但是在win10上面,c-free 5.0版本没有c-free 4好用,c-free 4启动更 ...

  8. python爬虫——数据爬取和具体解析

    关于正则表达式的更多用法,可参考链接:https://blog.csdn.net/weixin_40040404/article/details/81027081 一.正则表达式: 1.常用正则匹配: ...

  9. C++第三章课后作业答案及解析---指针的使用

    今天继续完成上周没有完成的习题---C++第三章课后作业,本章题涉及指针的使用,有指向对象的指针做函数参数,对象的引用以及友元类的使用方法等 它们具体的使用方法在下面的题目中会有具体的解析(解析标注在 ...

  10. oracle: jdbcTypeForNull configuration property. Cause: java.sql.SQLException: 无效的列类型: 1111

    https://www.cnblogs.com/mmlw/p/5808072.html org.mybatis.spring.MyBatisSystemException: nested except ...