P4211 [LNOI2014]LCA LCT
P4211 [LNOI2014]LCA
链接
思路
多次询问\(\sum\limits_{l \leq i \leq r}dep[LCA(i,z)]\)
可以转化成l到r上的点到根的路径+1
最后求一下1到z的路径和就是所求
区间\([l,r]\)是可以差分的
离线直接求就行了。
树剖常数小,但还是比LCT多个log
我的LCT好慢啊
代码
#include <bits/stdc++.h>
#define ls c[x][0]
#define rs c[x][1]
using namespace std;
const int N = 1e5 + 7, mod = 201314;
int read() {
int x = 0, f = 1; char s = getchar();
for (;s > '9' || s < '0'; s = getchar()) if (s == '-') f = -1;
for (;s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
return x * f;
}
int f[N], c[N][2], w[N], siz[N], sum[N], stak[N], lazy[N], lazytwo[N];
bool isroot(int x) {return c[f[x]][0] == x || c[f[x]][1] == x;}
void tag(int x){swap(ls,rs), lazy[x] ^= 1;}
void tagtwo(int x, int val) {
sum[x] = (sum[x] + 1LL * val * siz[x] % mod) % mod;
w[x] = (w[x] + val) % mod;
lazytwo[x] = (lazytwo[x] + val) % mod;
}
void pushdown(int x) {
if (lazy[x]) {
if (ls) tag(ls);
if (rs) tag(rs);
lazy[x] ^= 1;
}
if (lazytwo[x]) {
if (ls) tagtwo(ls, lazytwo[x]);
if (rs) tagtwo(rs, lazytwo[x]);
lazytwo[x] = 0;
}
}
void pushup(int x) {
sum[x] = (sum[ls] + sum[rs] + w[x]) % mod;
siz[x] = siz[ls] + siz[rs] + 1;
}
void rotate(int x) {
int y = f[x], z = f[y], k = c[y][1] == x, w = c[x][!k];
if (isroot(y)) c[z][c[z][1] == y] = x;
c[x][!k] = y;
c[y][k] = w;
if (w) f[w] = y;
f[x] = z;
f[y] = x;
pushup(y);
}
void splay(int x) {
int y = x, z = 0;
stak[++z] = y;
while (isroot(y)) stak[++z] = y = f[y];
while (z) pushdown(stak[z--]);
while (isroot(x)) {
y = f[x], z = f[y];
if (isroot(y)) rotate((c[y][0] == x)^(c[z][0] == y) ? x : y);
rotate(x);
}
pushup(x);
}
void access(int x) {
for (int y = 0; x;x = f[y = x])
splay(x), rs = y, pushup(x);
}
void makeroot(int x) {
access(x), splay(x);
tag(x);
}
int findroot(int x) {
access(x), splay(x);
while(ls) pushdown(x), x = ls;
return x;
}
void split(int x, int y) {
makeroot(x), access(y), splay(y);
}
void link(int x, int y) {
makeroot(x);
if (findroot(y) != x) f[x] = y;
}
void cut(int x, int y) {
makeroot(x);
if (findroot(y) == x && f[x] == y && !rs) {
f[x] = c[y][0] = 0;
pushup(y);
}
}
struct node {
int id, l, z, ans;
node(int a = 0, int b = 0, int c = 0) {
id = a, l = b, z = c;
}
} Q[N];
bool cmp1(const node &a, const node& b) {
return a.l < b.l;
}
bool cmp2(const node &a, const node& b) {
return a.id < b.id;
}
int main() {
// freopen("a.in", "r", stdin);
int n = read(), m = read();
for (int i = 2; i <= n; ++i) {
int x = read() + 1;
link(i, x);
}
for (int i = 1; i <= m; ++i) {
int l = read() + 1, r = read() + 1, z = read() + 1;
Q[i * 2 - 1] = node(i * 2 - 1, l - 1, z);
Q[i * 2] = node(i * 2, r, z);
}
m <<= 1;
sort(Q + 1, Q + 1 + m, cmp1);
int js = 1;
for (int i = 0; i <= n; ++i) {
if (i) split(1, i),tagtwo(i, 1);
while(Q[js].l == i) {
split(1, Q[js].z);
Q[js].ans = sum[Q[js].z];
js++;
}
}
sort(Q + 1, Q + 1 + m, cmp2);
for (int i = 2; i <= m; i += 2) {
int ans = Q[i].ans - Q[i - 1].ans;
ans = (ans % mod + mod) % mod;
printf("%d\n", ans);
}
return 0;
}
P4211 [LNOI2014]LCA LCT的更多相关文章
- P4211 [LNOI2014]LCA
P4211 [LNOI2014]LCA 链接 分析: 首先一种比较有趣的转化是,将所有点到1的路径上都+1,然后z到1的路径上的和,就是所有答案的deep的和. 对于多次询问,要么考虑有把询问离线,省 ...
- 洛谷 P4211 [LNOI2014]LCA 解题报告
[LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...
- 洛谷 P4211 [LNOI2014]LCA (树链剖分+离线)
题目:https://www.luogu.org/problemnew/solution/P4211 相当难的一道题,其思想难以用言语表达透彻. 对于每个查询,区间[L,R]中的每个点与z的lca肯定 ...
- Luogu P4211 [LNOI2014]LCA
我去这道题的Luogu评级是假的吧,这都算黑题. 我们首先考虑把操作离线不强制在线的题目离线一下一般都要方便些 考虑差分,我们用\(f(x)\)表示\([1,x]\)之间的点与\(z\)的答案,那么显 ...
- 并不对劲的bzoj3626:loj2558:p4211:[LNOI2014]LCA
题目大意 有一棵有\(n\)(\(n\leq5*10^4\))个点的树,\(q\)(\(q\leq5*10^4\))次询问,每次给出\(l,r,x\)表示询问所有编号在\([l,r]\)的点与点\(x ...
- 洛谷$P4211\ [LNOI2014]\ LCA$ 树链剖分+线段树
正解:树剖+线段树 解题报告: 传送门$QwQ$ 看到$dep[lca]$啥的就想到之前托腮腮$CSP$模拟$D1T3$的那个套路,,, 然后试下这个想法,于是$dep[lca(x,y)]=\sum_ ...
- [火星补锅] 非确定性有穷状态决策自动机练习题Vol.3 T3 && luogu P4211 [LNOI2014]LCA 题解
前言: 这题感觉还是很有意思.离线思路很奇妙.可能和二次离线有那么一点点相似?当然我不会二次离线我就不云了. 解析: 题目十分清真. 求一段连续区间内的所有点和某个给出的点的Lca的深度和. 首先可以 ...
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
- bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status ...
随机推荐
- C#利用控件mscomm32.ocx读取串口datalogic扫描枪数据
1).开发环境VS12,语言C# 2).扫描枪品牌:datalogic 4470 3).通讯协议:串口 1.首先,第一步创建一个新工程,windows窗体应用程序,命名为TestScanner,如下: ...
- Kafka分布式的消息顺序
Kafka分布式的单位是partition,同一个partition用一个write ahead log组织,所以可以保证FIFO的顺序.不同partition之间不能保证顺序. 但是绝大多数用户都可 ...
- Spring Boot 复习
简介 Spring Boot 是由 Pivotal 团队提供的全新框架,其设计目的是用来简化新 Spring 应用的初始搭 建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义 ...
- MySQL之查询篇(三)
一:查询 1.创建数据库,数据表 -- 创建数据库 create database python_test_1 charset=utf8; -- 使用数据库 use python_test_1; -- ...
- Microsoft SQL Server数据库语法
目录 关于数据库的语法: 1.创建数据库 create database 数据库名on primary(主文件属性(name,filename,size等)) -用逗号隔开次要主要文件和次要文件( ...
- Ueditor 关于视频上传相关问题
!!!每次改动后记得,清除一下浏览器缓存再试 !!! 4点: 1.修复编辑时视频不能预览问题: 2.插入视频的时候.在预览的窗口提示 “输入的视频地址有误,请检查后再试!” 3.ueditor ...
- Beego 学习笔记12:文件的操作
文件的操作 1> 此事例操作的是text文件 2> 文件的操作有读取text内容,将内容写入到文件中,删除文件,创建文件 3> 新建一个控制器,名为rwfil ...
- 14、vue-cli脚手架搭建项目
1:全局安装vue-cli:npm install --global vue-cli2:进入你的项目目录:cd myProject3:初始化创建项目:vue init webpack vue-demo ...
- Qt Graphics-View的打印功能实现
本文来研究一下Qt Graphics-View的打印功能实现. 在Qt的官方文档中介绍了Graphics-View的打印相关内容. Qt中对打印的支持是有一个独立的printsupport模块来完成的 ...
- 地产propretie单词propretie财产
中文名:房产财产地产 外文名:property.propretie 释义:财产.所有物等 用法:作名词. 词汇搭配动词+-等 目录 1 英文释义 2 释义例句 3 词汇搭配 4 衍生 英文释义 1. ...