线性规划问题的基本内容

线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题。

\[\min z=\sum_{j=1}^{n} f_{j} x_{j}
\]

\[\text { s.t. }\left\{\begin{array}{ll}{\sum_{j=1}^{n} a_{i j} x_{j} \leqslant b_{i}} & {(i=1,2, \cdots, m)} \\ {\sum_{j=1}^{n} a_{k j}^{\mathrm{eq}} x_{j} \leqslant b_{k}^{\mathrm{eq}}} & {(k=1,2, \cdots, h)} \\ {\mathrm{lb}_{j} \leqslant x_{j} \leqslant \mathrm{ub}_{j}} & {(j=1,2, \cdots, n)}\end{array}\right.
\]

其中

价值系数向量为

\[\mathbf{F}=\left(f_{1}, f_{2}, \cdots, f_{n}\right)^{\mathrm{T}}
\]

决策变量向量为

\[\mathbf{X}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\mathrm{T}}
\]

不等式约束系数矩阵为

\[\mathbf{A}=\left(\begin{array}{ccc}{a_{11}} & {\cdots} & {a_{1 n}} \\ {\vdots} & {\ddots} & {\vdots} \\ {a_{m 1}} & {\cdots} & {a_{m n}}\end{array}\right)
\]

不等式右端常数向量为

\[\mathbf{B}=\left(b_{1}, b_{2}, \cdots, b_{n}\right)^{\mathrm{T}}
\]

等式约束系数矩阵为

\[\mathbf{A}_{eq} = \left(\begin{array}{ccc}{a_{11}^{\mathrm{cq}}} & {\cdots} & {a_{1 n}^{\mathrm{cq}}} \\ {\vdots} & {\ddots} & {\vdots} \\ {a_{\mathrm{h1}}^{\mathrm{eq}}} & {\cdots} & {a_{\mathrm{hn}}^{\mathrm{eq}}}\end{array}\right)
\]

等式右端常数向量为

\[\mathbf{B}_{\mathrm{eq}}=\left(b_{1}^{\mathrm{eq}}, b_{2}^{\mathrm{eq}}, \cdots, b_{\mathrm{h}}^{\mathrm{eq}}\right)^{\mathrm{T}}
\]

决策变量下界向量为

\[\mathbf{L B}=\left(\mathrm{lb}_{1}, \mathrm{lb}_{2}, \cdots, \mathrm{lb}_{n}\right)^{\mathrm{T}}
\]

决策变量上界变量为

\[\mathbf{UB}=\left(\mathrm{ub}_{1}, \mathrm{ub}_{2}, \cdots, \mathrm{ub}_{n}\right)^{\mathrm{T}}
\]

当目标函数为最小值时,上述问题可以写成如下形式:

\[\min z=\boldsymbol{F}^{\mathrm{T}} \boldsymbol{X}
\]

\[\text { s.t. }\left\{\begin{array}{l}{\mathbf{A}\mathbf{X} \leqslant \mathbf{B}} \\ {\mathbf{A}_{\mathrm{eq}} \mathbf{X}=\mathbf{B}_{\mathrm{eq}}} \\ {\mathbf{LB} \leqslant \mathbf{X} \leqslant \mathbf{UB}}\end{array}\right.
\]

当目标函数为最大值时,上述问题可以写成如下形式:

\[\max z=\boldsymbol{-F}^{\mathrm{T}} \boldsymbol{X}
\]

\[\text { s.t. }\left\{\begin{array}{l}{\mathbf{A}\mathbf{X} \leqslant \mathbf{B}} \\ {\mathbf{A}_{\mathrm{eq}} \mathbf{X}=\mathbf{B}_{\mathrm{eq}}} \\ {\mathbf{LB} \leqslant \mathbf{X} \leqslant \mathbf{UB}}\end{array}\right.
\]

Matlab模型代码

调用形式

    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = linprog(F,A,B,Aeq,Beq,LB,UB) % 目标函数为最小值
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = linprog(-F,A,B,Aeq,Beq,LB,UB) % 目标函数为最大值

输入变量

  • F 为目标函数中的价值系数向量

  • A 为不等式约束系数矩阵(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)

  • B 为不等式右端常数向量(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)

  • Aeq 为等式约束系数矩阵

  • Beq 为等式右端常数向量

  • LB 为决策变量下界向量

  • UB为决策变量上界向量

在调用时,输入参数不存在时,可以将其输入用 [] 空矩阵表示。

输出变量

  • X 为最优解
  • FVAL 为最优目标值
  • EXITFLAG 为运行结束标志,当等于1时,表示程序收敛于解 X;当等于0时,表示程序运行次数到达最大;当小于0时,说明情况较多
  • OUTPUT 为程序迭代次数
  • LAMBDA 为解X相关的Largrange乘子和影子价格

案例演示

目标函数与约束条件

\[\min z=2 x_{1}+3 x_{2}+x_{3}
\]

\[\left\{\begin{array}{l}{x_{1}+4 x_{2}+2 x_{3} \geq 8} \\ {3 x_{1}+2 x_{2} \geq 6} \\ {x_{1}, x_{2}, x_{3} \geq 0}\end{array}\right.
\]

Matlab程序

F= [2;3;1];
A = [1,4,2;3,2,0];
B = [8;6];
LB = zeros(3,1);
[X,FVAL] = linprog(F,-A,-B,[],[],LB,[])

运行结果

Optimization terminated.

X =

    0.8066
1.7900
0.0166 FVAL = 7.0000

Matlab 线性规划问题模型代码的更多相关文章

  1. Matlab 整数线性规划问题模型代码

    整数线性规划问题的基本内容 整数线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题.其中自变量只能取整数.特别地,当自变量只能取0或者1时,称之为 0-1 整数规 ...

  2. Matlab 非线性规划问题模型代码

    非线性规划问题的基本内容 非线性规划解决的是自变量在一定的非线性约束或线性约束组合条件下,使得非线性目标函数求得最大值或者最小值的问题. 当目标函数为最小值时,上述问题可以写成如下形式: \[ \mi ...

  3. Matlab 图论最短路问题模型代码

    最短路问题的基本内容 最短路问题研究的是,在一个点与点之间连接形成的网络图中,对应路径赋予一定的权重(可以理解为两点之间的距离),计算任意两点之间如何和走,路径最短的问题.在这里的距离可以理解成各种两 ...

  4. Matlab 模拟退火算法模型代码

    function [best_solution,best_fit,iter] = mySa(solution,a,t0,tf,Markov) % 模拟退化算法 % ===== 输入 ======% % ...

  5. [原创] Matlab 指派问题模型代码

    指派问题的基本内容 一般来说指派问题解决的是如何将任务分配到人,使得任务完成的效益最大化(成本型效益则求最小值,利润型效益则求最大值).上述问题一个 0 - 1 整数规划问题. 问题围绕着任务和人展开 ...

  6. MATLAB Coder从MATLAB生成C/C++代码步骤

    MATLAB Coder可以从MATLAB代码生成独立的.可读性强.可移植的C/C++代码. 使用MATLAB Coder产生代码的3个步骤: 准备用于产生代码的MATLAB算法: 检查MATLAB代 ...

  7. 转 举例说明使用MATLAB Coder从MATLAB生成C/C++代码步骤

    MATLAB Coder可以从MATLAB代码生成独立的.可读性强.可移植的C/C++代码. http://www.mathworks.cn/products/matlab-coder/ 使用MATL ...

  8. 多路复用I/O模型poll() 模型 代码实现

    多路复用I/O模型poll() 模型 代码实现 poll()机制和select()机制是相似的,都是对多个描述符进行轮询的方式. 不同的是poll()没有描述符数目的限制. 是通过struct pol ...

  9. Windows Socket五种I/O模型——代码全攻略(转)

    Winsock 的I/O操作: 1. 两种I/O模式 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序.套接字 默认为阻塞模式.可以通过多线程技术进行处理. 非阻塞模式:执行I/O操 ...

随机推荐

  1. .NET总结--WebService 配置与设置,发布

    发环境 OS:win10 企业版 开发工具:VS2017 IIS版本:6.0 .NET版本:4.6.1 Web Service 简介 Web Service也叫XML Web Service WebS ...

  2. shell 换行与不换行

    test.sh: echo -e "hello w\norld!"echo -e "hello w\c"echo "orld!" 输出 bo ...

  3. gitlab 上传代码

    #生成公钥ssh-keygen -t ed25519 -C "xxx@tianwang.com"#拷贝公钥pbcopy < ~/.ssh/id_ed25519.pub 在网页 ...

  4. 面试问烂的 MySQL 四种隔离级别,看完吊打面试官!

    阅读本文大概需要 5.6 分钟. 来源:网络 什么是事务 事务是应用程序中一系列严密的操作,所有操作必须成功完成,否则在每个操作中所作的所有更改都会被撤消.也就是事务具有原子性,一个事务中的一系列的操 ...

  5. [基础不过关填坑] 跨iframe触发事件

    子iframe $("#testId").on("change",function(){ alert("change") }) 父页面 $( ...

  6. [原创]STAR法则

    [原创]STAR法则 STAR法则是情境(situation).任务(task).行动(action).结果(result)四项的缩写. STAR法则是一种常常被面试官使用的工具,用来收集面试者与工作 ...

  7. 【Beta】Scrum meeting 6

    目录 写在前面 进度情况 任务进度表 Beta-1阶段燃尽图 遇到的困难 照片 commit记录截图 小程序前端仓库 后端代码仓库 技术博客 写在前面 例会时间:5.10 22:30-22:50 例会 ...

  8. [技术博客] rails控制台调试路由

    目录 rails console 获得路由 app.xxx_path 发送请求 获得响应 作者:庄廓然 rails console 在项目目录下执行rails console test 可以进入测试模 ...

  9. maven 工具

    maven 工具 1.打包:mvn clean package 2.打包并安装到本地仓库:mvn clean install 3.利用maven下载源代码:mvn dependency:sources ...

  10. Springmvc 异步处理

    package com.lookcoder.haircutmember.controller.login.page.async; import org.slf4j.Logger; import org ...