线性规划问题的基本内容

线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题。

\[\min z=\sum_{j=1}^{n} f_{j} x_{j}
\]

\[\text { s.t. }\left\{\begin{array}{ll}{\sum_{j=1}^{n} a_{i j} x_{j} \leqslant b_{i}} & {(i=1,2, \cdots, m)} \\ {\sum_{j=1}^{n} a_{k j}^{\mathrm{eq}} x_{j} \leqslant b_{k}^{\mathrm{eq}}} & {(k=1,2, \cdots, h)} \\ {\mathrm{lb}_{j} \leqslant x_{j} \leqslant \mathrm{ub}_{j}} & {(j=1,2, \cdots, n)}\end{array}\right.
\]

其中

价值系数向量为

\[\mathbf{F}=\left(f_{1}, f_{2}, \cdots, f_{n}\right)^{\mathrm{T}}
\]

决策变量向量为

\[\mathbf{X}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\mathrm{T}}
\]

不等式约束系数矩阵为

\[\mathbf{A}=\left(\begin{array}{ccc}{a_{11}} & {\cdots} & {a_{1 n}} \\ {\vdots} & {\ddots} & {\vdots} \\ {a_{m 1}} & {\cdots} & {a_{m n}}\end{array}\right)
\]

不等式右端常数向量为

\[\mathbf{B}=\left(b_{1}, b_{2}, \cdots, b_{n}\right)^{\mathrm{T}}
\]

等式约束系数矩阵为

\[\mathbf{A}_{eq} = \left(\begin{array}{ccc}{a_{11}^{\mathrm{cq}}} & {\cdots} & {a_{1 n}^{\mathrm{cq}}} \\ {\vdots} & {\ddots} & {\vdots} \\ {a_{\mathrm{h1}}^{\mathrm{eq}}} & {\cdots} & {a_{\mathrm{hn}}^{\mathrm{eq}}}\end{array}\right)
\]

等式右端常数向量为

\[\mathbf{B}_{\mathrm{eq}}=\left(b_{1}^{\mathrm{eq}}, b_{2}^{\mathrm{eq}}, \cdots, b_{\mathrm{h}}^{\mathrm{eq}}\right)^{\mathrm{T}}
\]

决策变量下界向量为

\[\mathbf{L B}=\left(\mathrm{lb}_{1}, \mathrm{lb}_{2}, \cdots, \mathrm{lb}_{n}\right)^{\mathrm{T}}
\]

决策变量上界变量为

\[\mathbf{UB}=\left(\mathrm{ub}_{1}, \mathrm{ub}_{2}, \cdots, \mathrm{ub}_{n}\right)^{\mathrm{T}}
\]

当目标函数为最小值时,上述问题可以写成如下形式:

\[\min z=\boldsymbol{F}^{\mathrm{T}} \boldsymbol{X}
\]

\[\text { s.t. }\left\{\begin{array}{l}{\mathbf{A}\mathbf{X} \leqslant \mathbf{B}} \\ {\mathbf{A}_{\mathrm{eq}} \mathbf{X}=\mathbf{B}_{\mathrm{eq}}} \\ {\mathbf{LB} \leqslant \mathbf{X} \leqslant \mathbf{UB}}\end{array}\right.
\]

当目标函数为最大值时,上述问题可以写成如下形式:

\[\max z=\boldsymbol{-F}^{\mathrm{T}} \boldsymbol{X}
\]

\[\text { s.t. }\left\{\begin{array}{l}{\mathbf{A}\mathbf{X} \leqslant \mathbf{B}} \\ {\mathbf{A}_{\mathrm{eq}} \mathbf{X}=\mathbf{B}_{\mathrm{eq}}} \\ {\mathbf{LB} \leqslant \mathbf{X} \leqslant \mathbf{UB}}\end{array}\right.
\]

Matlab模型代码

调用形式

    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = linprog(F,A,B,Aeq,Beq,LB,UB) % 目标函数为最小值
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = linprog(-F,A,B,Aeq,Beq,LB,UB) % 目标函数为最大值

输入变量

  • F 为目标函数中的价值系数向量

  • A 为不等式约束系数矩阵(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)

  • B 为不等式右端常数向量(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)

  • Aeq 为等式约束系数矩阵

  • Beq 为等式右端常数向量

  • LB 为决策变量下界向量

  • UB为决策变量上界向量

在调用时,输入参数不存在时,可以将其输入用 [] 空矩阵表示。

输出变量

  • X 为最优解
  • FVAL 为最优目标值
  • EXITFLAG 为运行结束标志,当等于1时,表示程序收敛于解 X;当等于0时,表示程序运行次数到达最大;当小于0时,说明情况较多
  • OUTPUT 为程序迭代次数
  • LAMBDA 为解X相关的Largrange乘子和影子价格

案例演示

目标函数与约束条件

\[\min z=2 x_{1}+3 x_{2}+x_{3}
\]

\[\left\{\begin{array}{l}{x_{1}+4 x_{2}+2 x_{3} \geq 8} \\ {3 x_{1}+2 x_{2} \geq 6} \\ {x_{1}, x_{2}, x_{3} \geq 0}\end{array}\right.
\]

Matlab程序

F= [2;3;1];
A = [1,4,2;3,2,0];
B = [8;6];
LB = zeros(3,1);
[X,FVAL] = linprog(F,-A,-B,[],[],LB,[])

运行结果

Optimization terminated.

X =

    0.8066
1.7900
0.0166 FVAL = 7.0000

Matlab 线性规划问题模型代码的更多相关文章

  1. Matlab 整数线性规划问题模型代码

    整数线性规划问题的基本内容 整数线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题.其中自变量只能取整数.特别地,当自变量只能取0或者1时,称之为 0-1 整数规 ...

  2. Matlab 非线性规划问题模型代码

    非线性规划问题的基本内容 非线性规划解决的是自变量在一定的非线性约束或线性约束组合条件下,使得非线性目标函数求得最大值或者最小值的问题. 当目标函数为最小值时,上述问题可以写成如下形式: \[ \mi ...

  3. Matlab 图论最短路问题模型代码

    最短路问题的基本内容 最短路问题研究的是,在一个点与点之间连接形成的网络图中,对应路径赋予一定的权重(可以理解为两点之间的距离),计算任意两点之间如何和走,路径最短的问题.在这里的距离可以理解成各种两 ...

  4. Matlab 模拟退火算法模型代码

    function [best_solution,best_fit,iter] = mySa(solution,a,t0,tf,Markov) % 模拟退化算法 % ===== 输入 ======% % ...

  5. [原创] Matlab 指派问题模型代码

    指派问题的基本内容 一般来说指派问题解决的是如何将任务分配到人,使得任务完成的效益最大化(成本型效益则求最小值,利润型效益则求最大值).上述问题一个 0 - 1 整数规划问题. 问题围绕着任务和人展开 ...

  6. MATLAB Coder从MATLAB生成C/C++代码步骤

    MATLAB Coder可以从MATLAB代码生成独立的.可读性强.可移植的C/C++代码. 使用MATLAB Coder产生代码的3个步骤: 准备用于产生代码的MATLAB算法: 检查MATLAB代 ...

  7. 转 举例说明使用MATLAB Coder从MATLAB生成C/C++代码步骤

    MATLAB Coder可以从MATLAB代码生成独立的.可读性强.可移植的C/C++代码. http://www.mathworks.cn/products/matlab-coder/ 使用MATL ...

  8. 多路复用I/O模型poll() 模型 代码实现

    多路复用I/O模型poll() 模型 代码实现 poll()机制和select()机制是相似的,都是对多个描述符进行轮询的方式. 不同的是poll()没有描述符数目的限制. 是通过struct pol ...

  9. Windows Socket五种I/O模型——代码全攻略(转)

    Winsock 的I/O操作: 1. 两种I/O模式 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序.套接字 默认为阻塞模式.可以通过多线程技术进行处理. 非阻塞模式:执行I/O操 ...

随机推荐

  1. Chomp类游戏——必胜策略分析

    首先介绍一个重要定理——策梅洛定理(Zermelo) 策梅洛定理,表明在二人参与的游戏/博弈中,如果满足: --------游戏的步骤数有限 --------信息完备(二人都了解游戏规则,了解游戏曾经 ...

  2. 学习:窗口创建以及消息处理basic.c

    WNDCLASS结构: Windows 的窗口总是基于窗口类来创建的,窗口类同时确定了处理窗口消息的窗口过程(回调函数). 在创建应用程序窗口之前,必须调用 RegisterClass 函数来注册窗口 ...

  3. 7-zip命令行详解

    一.简介 7z,全称7-Zip, 是一款开源软件.是目前公认的压缩比例最大的压缩解压软件. 主要特征: # 全新的LZMA算法加大了7z格式的压缩比 # 支持格式: * 压缩 / 解压缩:7z, XZ ...

  4. Xamarin.Forms 自定义控件(呈现器和效果)

    Xamarin.Forms 使用目标平台的本机控件呈现用户界面,从而让 Xamarin.Forms 应用程序为每个平台保留了相应的界面外观.凭借效果,无需进行自定义呈现器实现,即可自定义每个平台上的本 ...

  5. rust crates 国内镜像加速配置

    rust 很不错,但是crates 经常下载有点慢,当前阿里云还没有相关的镜像,还有科大为我们提供了一个 配置方法 添加crates 配置 $HOME/.cargo/config 目录 [regist ...

  6. How to Construct the Input Bet String

    The purpose of this section is to describe the format of the string which will submitted to the Pyth ...

  7. 机器学习之决策树原理和sklearn实践

    1. 场景描述 时间:早上八点,地点:婚介所 '闺女,我有给你找了个合适的对象,今天要不要见一面?' '多大?' '26岁' '长的帅吗?' '还可以,不算太帅' '工资高吗?' '略高于平均水平' ...

  8. ImportError: cannot import name 'BaseDataset' from 'src.dataset'

    因为我进行了相互调用,我在父类中调用了子类. from src.dataset import BaseDataset class PSINSDataset(BaseDataset): from src ...

  9. Google Dremel架构

    Dremel 是Google 的“交互式”数据分析系统.Google开发了Dremel将处理时间缩短到秒级,作为MapReduce的有力补充.Apache推出Dremel的开源实现Drill,将Dre ...

  10. MAC OS系统替换homebrew使用阿里云或中科大的镜像源

    阿里云镜像 # 替换brew.git: cd "$(brew --repo)" git remote set-url origin https://mirrors.aliyun.c ...