【BZOJ2693】jzptab & 【BZOJ2154】Crash的数字表格
题目
弱化版题目的传送门(【BZOJ2154】Crash的数字表格)
思路&解法
题目是要求: \(\sum\limits_{i = 1}^{n}\sum\limits_{j = 1}^{m}lcm(i, j)\)
于是我们可以把式子化成这样:
\]
然后我们枚举gcd
\]
我们再把式子换一下
\]
\]
\]
反演一下
\]
\]
\]
其中$$F(n, m) = {nm(n+1)(m+1)\over 4}$$
继续优化
\]
后面的\(\sum\limits_{d|T}\mu(d)d^2{\frac{T}{d}}\)的前缀和很容易求
代码
【BZOJ2693】jzptab
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 100000009LL;
const int N = 10000010;
int p[N], total;
bool vis[N];
LL g[N];
void init()
{ g[1] = 1;
for (int i = 2; i <= 10000000; i++)
{ if (!vis[i]) p[++total] = i, g[i] = (LL) (1 - i + mod) % mod;
for (int j = 1; j <= total && i * (LL) p[j] <= 10000000; j++)
{ vis[i * p[j]] = 1;
if (i % p[j] == 0) { g[i * p[j]] = g[i]; break; }
else g[i * p[j]] = (g[i] * g[p[j]]) % mod;
}
}
for (int i = 2; i <= 10000000; i++) g[i] = (g[i] * i + g[i-1]) % mod;
}
LL Get(int n) { return ((LL) n * (LL) (n+1) / 2LL) % mod; }
LL Sum(int n, int m) { return (Get(n) * Get(m)) % mod; }
LL Calc(int n, int m)
{ int last = 0;
LL Ans = 0;
for (int i = 1; i <= min(n, m); i = last+1)
{ last = min(n / (n/i), m / (m/i));
Ans = (Ans + (Sum(n/i, m/i) * (g[last] - g[i-1])) % mod) % mod;
}
return (Ans + mod) % mod;
}
int main()
{ init();
int T;
scanf("%d", &T);
while (T--)
{ int n, m;
scanf("%d %d", &n, &m);
printf("%lld\n", Calc(n, m));
}
return 0;
}
【BZOJ2154】Crash的数字表格
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 20101009LL;
const int N = 10000010;
int p[N], total;
bool vis[N];
LL g[N];
void init()
{ g[1] = 1;
for (int i = 2; i <= 10000000; i++)
{ if (!vis[i]) p[++total] = i, g[i] = (LL) (1 - i + mod) % mod;
for (int j = 1; j <= total && i * (LL) p[j] <= 10000000; j++)
{ vis[i * p[j]] = 1;
if (i % p[j] == 0) { g[i * p[j]] = g[i]; break; }
else g[i * p[j]] = (g[i] * g[p[j]]) % mod;
}
}
for (int i = 2; i <= 10000000; i++) g[i] = (g[i] * i + g[i-1]) % mod;
}
LL Get(int n) { return ((LL) n * (LL) (n+1) / 2LL) % mod; }
LL Sum(int n, int m) { return (Get(n) * Get(m)) % mod; }
LL Calc(int n, int m)
{ int last = 0;
LL Ans = 0;
for (int i = 1; i <= min(n, m); i = last+1)
{ last = min(n / (n/i), m / (m/i));
Ans = (Ans + (Sum(n/i, m/i) * (g[last] - g[i-1])) % mod) % mod;
}
return (Ans + mod) % mod;
}
int main()
{ init();
int n, m;
scanf("%d %d", &n, &m);
printf("%lld\n", Calc(n, m));
return 0;
}
一些其他的东西
弱化版题目可以\(O(n)\)过, 然而我是用\(O(\sqrt{n})\)的算法做的, 而且达到了惊人的18s, 比\(O(n)\)的解法慢多了。我哪里写锉了。。。。。。
【BZOJ2693】jzptab & 【BZOJ2154】Crash的数字表格的更多相关文章
- BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...
- BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab
[传送门:BZOJ2154&BZOJ2693] 简要题意: 给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$ 题解: 莫比乌斯反演(因为BZOJ269 ...
- 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- BZOJ2154: Crash的数字表格
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题意&&题解:http://www.cnblogs.com/jiangl ...
- 【莫比乌斯反演】BZOJ2154 Crash的数字表格
Description 求sigma lcm(x,y),x<=n,y<=m.n,m<=1e7. Solution lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做 ...
- bzoj千题计划253:bzoj2154: Crash的数字表格
http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
随机推荐
- python发送文本邮件
#!/usr/bin/env python #coding=utf-8 #Author: Ca0Gu0 import time import smtplib from email.mime.text ...
- WPF在win7运行时报'Initialization of 'System.Windows.Setter' threw an exception.'
写的一个WPF程序,在win10运行好好的,在win7就报'Initialization of 'System.Windows.Setter' threw an exception.' 原来是xaml ...
- 六、Scrapy中Download Middleware的用法
本文转载自: https://scrapy-chs.readthedocs.io/zh_CN/latest/topics/downloader-middleware.html https://doc. ...
- ISNUMERIC()检测是否为数字
ISNUMERIC ( expression )当输入表达式得数为一个有效的整数.浮点数.money 或 decimal 类型,那么 ISNUMERIC 返回 1:否则返回 0.返回值为 1 确保可以 ...
- hdu 4786 最小生成树与最大生成树
/* 题意 :有一些边权值为1和0,判断是否存在一个生成树使得他的总权值为一个斐波那契数. 解法:建立一个最小生成树向里面加权值为1的边替换为0的边,保证原来的联通.因为权值为1,可直接求出最大生成树 ...
- 【学QT】2 - QT/E环境的建立
Arm-Linux嵌入式QT/E环境的建立(qt/e 3.x系列) QT/E 3.x系列比QT/E 2.x系列有非常大的改进,大大提高了开发进度,不再使用tmake,安装也更简单.但 ...
- asp.net--解决上传文件大小限制
原文地址 第一种方法,主要适用于IIS6.0版本 一.修改配置Web.Config文件中的httpRuntime节点 对于asp.net,默认只允许上传4M文件,增加如下配置,一般可以自定义最大文件大 ...
- Spring MVC-集成(Integration)-Hibernate验证器示例(转载实践)
以下内容翻译自:https://www.tutorialspoint.com/springmvc/springmvc_hibernate_validator.htm 说明:示例基于Spring MVC ...
- TCP 连接状态
TCP/IP的设计者如此设计,主要原因有两个: 防止上一次连接中的包迷路后重新出现,影响新的连接(经过2MSL时间后,上一次连接中所有重复的包都会消失). 为了可靠地关闭TCP连接.主动关闭方发送的最 ...
- 【实时文件同步】rsync+inotify-tools的安装与配置
http://blog.csdn.net/yakson/article/details/52044403