Winston the Worm just woke up in a fresh rectangular patch of earth. The rectangular patch is divided into cells, and each cell contains either food or a rock. Winston wanders aimlessly for a while until he gets hungry; then he immediately eats the food in his cell, chooses one of the four directions (north, south, east, or west) and crawls in a straight line for as long as he can see food in the cell in front of him. If he sees a rock directly ahead of him, or sees a cell where he has already eaten the food, or sees an edge of the rectangular patch, he turns left or right and once again travels as far as he can in a straight line, eating food. He never revisits a cell. After some time he reaches a point where he can go no further so Winston stops, burps and takes a nap.

For instance, suppose Winston wakes up in the following patch of earth (X's represent stones, all other cells contain food):

If Winston starts eating in row 0, column 3, he might pursue the following path (numbers represent order of visitation):

In this case, he chose his path very wisely: every piece of food
got eaten. Your task is to help Winston determine where he should begin
eating so that his path will visit as many food cells as possible.

InputInput will consist of multiple test cases.
Each test case begins with two positive integers, m and n , defining the
number of rows and columns of the patch of earth. Rows and columns are
numbered starting at 0, as in the figures above. Following these is a
non-negative integer r indicating the number of rocks, followed by a
list of 2r integers denoting the row and column number of each rock. The
last test case is followed by a pair of zeros. This should not be
processed. The value m×n will not exceed 625.OutputFor each test case, print the test case number (beginning with 1), followed by four values:

amount row column direction

where amount is the maximum number of pieces of food that Winston is
able to eat, (row, column) is the starting location of a path that
enables Winston to consume this much food, and direction is one of E, N,
S, W, indicating the initial direction in which Winston starts to move
along this path. If there is more than one starting location, choose the
one that is lexicographically least in terms of row and column numbers.
If there are optimal paths with the same starting location and
different starting directions, choose the first valid one in the list E,
N, S, W. Assume there is always at least one piece of food adjacent to
Winston's initial position.Sample Input

5 5
3
0 4 3 1 3 2
0 0

Sample Output

Case 1: 22 0 3 W
分析
题目大意就是给你一个地图,地图中只有两种元素,墙跟平地,然后要你求出一个人能在这个地图中走的最大距离。这个人一旦开始走路,那么他走的方向将是不变的。除非遇到墙,或者遇到地图的边,亦或者那个格子已经走过了,这个时候这个人才开始更换方向。
然后要你求出这个人能走的最大距离的起始点的位置,输出最大距离,起始点坐标,还有一开始走的方向。(E,N,S,W),如果最大距离相同,那么要输出起始点坐标的字典序最小的那个。
还有,如果四个方向都能达到最大,那么选择的方向的优先级由(E,N,S,W)往下排列。
就是爆搜,题目给的时间很大。我们可以枚举起点,对于每一个点搜索。关于输出,在搜索时按(E,N,S,W)的顺序,在更新答案时,只有当前答案大于记录答案才更新。
#include <cstdio>
#include <iostream>
#include <cmath>
#include <queue>
#include <algorithm>
#include <cstring>
#include <climits>
#define MAXN 626
#define X rx+dx[i]
#define Y ry+dy[i]
using namespace std;
int t=;
int r,m,n,g[MAXN][MAXN],ans[MAXN][MAXN],sx,sy,step,ansdd,ansx,ansy,md,maxx;
int ansd[MAXN][MAXN];
int dx[]={,,-,,},
dy[]={,,,,-};
void dfs(int x,int y)
{
for(int i=;i<=;i++)
{
int rx=x,ry=y;
if(X>=&&X<n&&Y>=&&Y<m&&g[X][Y]==)
{
if(x==sx&&y==sy) md=i;
g[X][Y]=++step;
if(step>ans[sx][sy])
ans[sx][sy]=step,
ansd[sx][sy]=md;
rx+=dx[i];ry+=dy[i];
while(X>=&&X<n&&Y>=&&Y<m&&g[X][Y]==)
{
g[X][Y]=++step;
if(step>ans[sx][sy])
ans[sx][sy]=step,
ansd[sx][sy]=md;
rx+=dx[i];ry+=dy[i];
}
dfs(rx,ry);
while(rx!=x||ry!=y)
{
g[rx][ry]=;
step--;
rx-=dx[i];ry-=dy[i];
}
}
}
}
void init()
{
memset(g,,sizeof(g));
memset(ans,,sizeof(ans));
memset(ansd,,sizeof(ansd));
ansdd=ansx=ansy=md=maxx=;
}
int main()
{
// freopen("1.in","r",stdin);
// freopen("1.out","w",stdout);
while()
{
init();
++t;
scanf("%d%d",&n,&m);
if(n==&&m==)return ;
scanf("%d",&r);
for(int i=;i<=r;i++)
{
int x,y;
scanf("%d%d",&x,&y);
g[x][y]=-;
}
for(int i=;i<n;i++)
for(int j=;j<m;j++)
if(g[i][j]!=-)
{
step=;sx=i;sy=j;
g[sx][sy]=-;
dfs(sx,sy);
g[sx][sy]=;
}
for(int i=;i<n;i++)
for(int j=;j<m;j++)
if(ans[i][j]>maxx)
{
maxx=ans[i][j];
ansx=i;ansy=j;
ansdd=ansd[i][j];
}
printf("Case %d: %d %d %d ",t,maxx+,ansx,ansy);
if(ansdd==) printf("E\n");
else if(ansdd==) printf("N\n");
else if(ansdd==) printf("S\n");
else if(ansdd==) printf("W\n");
}
return ;
}

HDU 2782 The Worm Turns (DFS)的更多相关文章

  1. 【HDOJ】2782 The Worm Turns

    DFS. /* 2782 */ #include <iostream> #include <queue> #include <cstdio> #include &l ...

  2. hdu 2782 dfs(限定)

    The Worm Turns Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. The Worm Turns

    The Worm Turns Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  4. TOJ 1191. The Worm Turns

    191.   The Worm Turns Time Limit: 1.0 Seconds   Memory Limit: 65536K Total Runs: 5465   Accepted Run ...

  5. HDU 1241 Oil Deposits --- 入门DFS

    HDU 1241 题目大意:给定一块油田,求其连通块的数目.上下左右斜对角相邻的@属于同一个连通块. 解题思路:对每一个@进行dfs遍历并标记访问状态,一次dfs可以访问一个连通块,最后统计数量. / ...

  6. hdu 1241 Oil Deposits(DFS求连通块)

    HDU 1241  Oil Deposits L -DFS Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & ...

  7. TJU ACM-ICPC Online Judge—1191 The Worm Turns

    B - The Worm Turns Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Su ...

  8. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  9. HDOJ(HDU).1016 Prime Ring Problem (DFS)

    HDOJ(HDU).1016 Prime Ring Problem (DFS) [从零开始DFS(3)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...

随机推荐

  1. LeetCode 856 递归思路详解

    题目描述 给定一个平衡括号字符串 S,按下述规则计算该字符串的分数: () 得 1 分. AB 得 A + B 分,其中 A 和 B 是平衡括号字符串. (A) 得 2 * A 分,其中 A 是平衡括 ...

  2. Python-基础-day6

    1.二进制 前言:计算机一共就能做两件事:计算和通信 2.字符编码 生活中的数字要想让计算机理解就必须转换成二进制.十进制到二进制的转换只能解决计算机理解数字的问题,那么文字要怎么让计算机理解呢? 于 ...

  3. open函数详解

    转载:https://www.cnblogs.com/frank-yxs/p/5925574.html open函数用来在进程中打开文件,如果成功则返回一个文件描述符fd. ============= ...

  4. linux内核(一)基础知识

    1,linux内核的基础知识 1.1 linux内核版本 从内核源码顶层目录Makefile中可以看到: VERSION和PATCHLEVEL组成主版本号,比如2.4.2.5.2.6等,稳定版本的德主 ...

  5. 8个超实用的Java测试工具和框架

    Java入门 如果你才刚开始接触Java世界,那么要做的第一件事情是,安装JDK——Java Development Kit(Java开发工具包),它自带有Java Runtime Environme ...

  6. 使用LSTM做电影评论负面检测——使用朴素贝叶斯才51%,但是使用LSTM可以达到99%准确度

    基本思路: 每个评论取前200个单词.然后生成词汇表,利用词汇index标注评论(对 每条评论的前200个单词编号而已),然后使用LSTM做正负评论检测. 代码解读见[[[评论]]]!embeddin ...

  7. ES设置查询的相似度算法

    similarity Elasticsearch allows you to configure a scoring algorithm or similarity per field. The si ...

  8. linux 应用软件集合

    史上最全面的Linux应用软件大集合 | 博客水木 1. 生产力 Linux 桌面的便利贴:Stickynotes sudo add-apt-repository ppa:umang/indicato ...

  9. 前端模块化 | 解读JS模块化开发中的 require、import 和 export

    本篇分为两个部分 第一部分:总结了ES6出现之前,在当时现有的运行环境中,实现"模块"的方式: 第二部分:总结了ES6出现后,module成为ES6标准,客户端实现模块化的解决方案 ...

  10. 解决win8.1下sql配置iis的问题

    在配置iis8.5时,ISAPI和CGI限制中没有ASP.NET v4.0.30319, 所以要注册.net 4.0 注册方法为在“运行”中输入cmd,然后在命令行中输入: C:\WINDOWS\Mi ...