Dilu have learned a new thing about integers, which is - any positive integer greater than 1 can be
divided by at least one prime number less than or equal to that number. So, he is now playing with
this property. He selects a number N. And he calls this D.
In each turn he randomly chooses a prime number less than or equal to D. If D is divisible by the
prime number then he divides D by the prime number to obtain new D. Otherwise he keeps the old
D. He repeats this procedure until D becomes 1. What is the expected number of moves required for
N to become 1.
[We say that an integer is said to be prime if its divisible by exactly two different integers. So, 1 is not
a prime, by definition. List of first few primes are 2, 3, 5, 7, 11, ...]
Input
Input will start with an integer T (T ≤ 1000), which indicates the number of test cases. Each of the
next T lines will contain one integer N (1 ≤ N ≤ 1000000).
Output
For each test case output a single line giving the case number followed by the expected number of turn
required. Errors up to 1e-6 will be accepted.
Sample Input
3
1
3
13
Sample Output
Case 1: 0.0000000000
Case 2: 2.0000000000
Case 3: 6.0000000000

题意:给出一个整数N,每次可以在不超过N的素数中随机选择一个P,如果P是N的约数,则把N变成N/P,否则N不变。问平均情况下需要多少次选择,才能把N变成1.

题解:记录dp[n] 表示 N = n是答案是多少

   dp[n] = 1 +  ∑dp[素数因子] *  1/素数总和  +   ∑dp[x] * (x为非因子素数)/ 素数总和

记忆化爆搜就可以

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long ll; const int N=; int H[N + ],P[N],cnt,vis[N + ];
double dp[N + ];
void prime_table() {
H[] = ;
for(int i = ; i <= N ; i++) {
if(!H[i]) {
P[++cnt] = i;
for(int j = * i ; j <= N ; j += i) H[j] = ;
}
}
}
double dfs(int n) {
if(vis[n]) return dp[n];
if(n == ) return dp[n] = ;
double& ans = dp[n];
int sum = , g = ;
vis[n] = ;
for(int i = ; i <= cnt && P[i] <= n; i++) {
sum ++;
if(n % P[i] == ) {
ans += dfs(n / P[i]);
}else g++;
}
return ans = (ans + sum) / (sum - g);
}
int main () {
cnt = ;
prime_table();
int T, cas = , n;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
dfs(n);
printf("Case %d: %.10f\n", cas++, dp[n]);
}
return ;
}

代码

UVA - 11762 - Race to 1 记忆化概率的更多相关文章

  1. UVA 11762 - Race to 1(概率)

    UVA 11762 - Race to 1 题意:给定一个n,每次随即选择一个n以内的质数,假设不是质因子,就保持不变,假设是的话.就把n除掉该因子,问n变成1的次数的期望值 思路:tot为总的质数. ...

  2. UVa 11762 Race to 1 (数学期望 + 记忆化搜索)

    题意:给定一个整数 n ,然后你要把它变成 1,变换操作就是随机从小于等于 n 的素数中选一个p,如果这个数是 n 的约数,那么就可以变成 n/p,否则还是本身,问你把它变成 1 的数学期望是多少. ...

  3. UVa 11762 - Race to 1

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. UVa 10599【lis dp,记忆化搜索】

    UVa 10599 题意: 给出r*c的网格,其中有些格子里面有垃圾,机器人从左上角移动到右下角,只能向右或向下移动.问机器人能清扫最多多少个含有垃圾的格子,有多少中方案,输出其中一种方案的格子编号. ...

  5. UVa 1629 切蛋糕(记忆化搜索)

    https://vjudge.net/problem/UVA-1629 题意: 有一个n行m列的网格蛋糕上有一些樱桃.每次可以用一刀沿着网格线把蛋糕切成两块,并且只能直切不能拐弯.要求最后每一块蛋糕上 ...

  6. UVa 10118 Free Candies (记忆化搜索+哈希)

    题意:有4堆糖果,每堆有n(最多40)个,有一个篮子,最多装5个糖果,我们每次只能从某一堆糖果里拿出一个糖果,如果篮子里有两个相同的糖果, 那么就可以把这两个(一对)糖果放进自己的口袋里,问最多能拿走 ...

  7. UVA 11762 Race to 1(记忆化+期望)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20869 [思路] DP+期望. 设f[x]表示从x转移到1的期望操 ...

  8. [uva 11762]Race to 1[概率DP]

    引用自:http://hi.baidu.com/aekdycoin/item/be20a91bb6cc3213e3f986d3,有改动 题意: 已知D, 每次从[1,D] 内的所有素数中选择一个Ni, ...

  9. UVA 11468 AC自动机入门题 记忆化概率dp+ac自动机

    /** 链接:https://vjudge.net/problem/UVA-11468 详见lrj训练指南P218 我的是反向求存在模板串的概率. dp[i][j]表示当前i位置选择字符,前面i-1个 ...

随机推荐

  1. JDBC基础01

    今日知识 1. JDBC基本概念2. 快速入门3. 对JDBC中各个接口和类详解 JDBC: 1. 概念:Java DataBase Connectivity Java 数据库连接, Java语言操作 ...

  2. BZOJ 3065 替罪羊树+动态开节点线段树

    思路: RT 可以看VFK的题解 我写了半天拍了半天... 不过是$nlog^2n$的 要写垃圾回收的 线段树 如果某个节点的sum是0  也可以free掉 //By SiriusRen #inclu ...

  3. POJ 2337 欧拉回路

    题意: 如果给出的单词能够首尾相接,请按字典序输出单词,中间要加'.' 否则输出三个"*". 思路: 欧拉回路 记得按字典序排序哦~ 加边的时候要倒着加.(邻接表遍历的时候是反着的 ...

  4. 9.18[XJOI] NOIP训练36

    ***在休息了周末两天(好吧其实只有半天),又一次投入了学车的怀抱,重新窝在这个熟悉的机房 今日9.18(今天以后决定不写打卡了) 日常一日总结 一个昏昏欲睡的早晨 打了一套不知道是谁出的题目,空间限 ...

  5. ManualResetEvent和AutoResetEvent的区别,分享来的

    在讨论这个问题之前,我们先了解这样一种观点,线程之间的通信是通过发信号来进行沟通的.(这不是废话) 先来讨论ManualResetEvent,讨论过程中我会穿插一些AutoResetEvent的内容, ...

  6. logging (日志) 模块

    本文源自景女神 函数式简单配置 import logging logging.debug('debug message') logging.info('info message') logging.w ...

  7. sql创建表

    表的创建 1.创建列(字段):列名+类型 2.设置主键列:能够唯一表示一条数据 3.设置唯一键:设计--索引/键--添加--唯一键(选择列)--确定 唯一键的内容不能重复 4.外键关系:一张表(从表) ...

  8. 关于用户禁用Cookie的解决办法和Session的图片验证码应用

    当用户通过客户端浏览页面初始化了Session之后(如:添加购物车,用户登陆等),服务器会将这些session数据保存在:Windows保存在C:\WINDOWS\Temp的目录下,Linux则是保存 ...

  9. ES : 软件工程学的复杂度理论及物理学解释

    系统论里面总是有一些通用的专业术语 比如复杂度.熵.焓,复杂度专门独立出来,成为复杂度理论 文章摘抄于:<非线性动力学> 刘秉政 编著  5.5 复杂性及其测度 热力学的几个专业术语 熵. ...

  10. VS2008中C++打开Excel(MFC)

    VS2008中C++打开Excel(MFC)——摘自网络,并加以细化 第一步:建立project(新建项目) 英文版 中文版 选择C++下的MFC Application(基于对话框的项目) 英文版 ...