本题是一个二叉树问题——Perfect Binary Tree。

一个完美二叉树(PBT)的深度为D,从根结点开始,按层次遍历顺序编号为1,2,...,2D-1。

有若干个球,依次由根结点落下。当一个球落在非叶结点上时,将向左子树或右子树落下。这个方向由每一个结点的flag控制(其中,flag是一个0-1型变量):

①当flag==0时,小球向左子树运动;

②当flag==1时,小球向右子树运动。flag初始化为0。

一个小球路过该结点后,该结点的flag值变化。

求解第I个球最终到达的叶结点。

可以考虑模拟。直接模拟的时间复杂度为O(ID),空间复杂度为O(2D),多组数据下TLE。

值得注意的是,在题中的编号方式中,若一个结点的编号为k,则其左子结点的编号为2*k,右子结点的编号为2*k+1。

于是,可以考虑某一个结点k的情况:若某一个小球是第i个路过结点k的小球,则:

①当i为奇数时,小球向左,下一个结点为2*k:此时,该小球是向左的第(i+1)/2个小球;

②当i为偶数时,小球向右,下一个结点为2*k+1:此时,该小球是向右的第i/2个小球。

于是,可以直接模拟第I个球的路线。时间复杂度为O(D),空间复杂度为O(1)。

参考程序如下:

#include <stdio.h>

int main(void)
{
int n, d, i;
scanf("%d", &n);
while (n--) {
scanf("%d%d", &d, &i);
int k = ;
d--;
while (d--) {
if (i & ) {
k = k << ;
i = i + >> ;
} else {
k = k << | ;
i = i >> ;
}
}
printf("%d\n", k);
}
return ;
}

UVa OJ 679 - Dropping Balls的更多相关文章

  1. UVA.679 Dropping Balls (二叉树 思维题)

    UVA.679 Dropping Balls (二叉树 思维题) 题意分析 给出深度为D的完全二叉树,按照以下规则,求第I个小球下落在那个叶子节点. 1. 默认所有节点的开关均处于关闭状态. 2. 若 ...

  2. UVA 679 Dropping Balls 由小见大,分析思考 二叉树放小球,开关翻转,小球最终落下叶子编号。

    A number of K balls are dropped one by one from the root of a fully binary tree structure FBT. Each ...

  3. UVa 679 Dropping Balls (例题 6-6)

    传送门:https://uva.onlinejudge.org/external/6/p679.pdf 题意:在一颗结点带开关的完全二叉树上扔球,初始时开关为关闭状态,树的深度为D(1 <= D ...

  4. Uva 679 Dropping Balls

    这道题如果模拟着来写,思路很简单 #include <iostream> #include <cstring> using namespace std; int T,D,I,c ...

  5. Uva 679 Dropping Balls (模拟/二叉树的编号)

    题意:有一颗二叉树,深度为D,所有节点从上到下从左到右编号为1,2,3.....在结点一处放一个小球,每个节点是一个开关,初始全是关闭的,小球从顶点落下,小球每次经过开关就会把它的状态置反,现在问第k ...

  6. UVa 679 - Dropping Balls【二叉树】【思维题】

    题目链接 题目大意: 小球从一棵所有叶子深度相同的二叉树的顶点开始向下落,树开始所有节点都为0.若小球落到节点为0的则往左落,否则向右落.并且小球会改变它经过的节点,0变1,1变0.给定树的深度D和球 ...

  7. UVA - 679 Dropping Balls(二叉树的编号)

    题意:二叉树按层次遍历从1开始标号,所有叶子结点深度相同,每个结点开关初始状态皆为关闭,小球从根结点开始下落(小球落在结点开关上会使结点开关状态改变),若结点开关关闭,则小球往左走,否则往右走,给定二 ...

  8. Dropping Balls (二叉树+思维)

      Dropping Balls  A number of K balls are dropped one by one from the root of a fully binary tree st ...

  9. Dropping Balls UVA - 679

      A number of K balls are dropped one by one from the root of a fully binary tree structure FBT. Eac ...

随机推荐

  1. Deep Learning Toolboxs

    一些好用的 Deep learning toolboxs DeepLearningToolbox MATLAB实现,能够使用CPU或GPU.GPU运算用gpumat实现.改动内核代码很方便 支持主要的 ...

  2. 君正Ingenic X1000E_halley2 更改Logo

    有两种方法可以改变开机logo,编译进内核或者修改u-boot. <一>.编译进内核 一. 制作LOGO图片(可以使用gimp) 1. 制作一个.ppm格式图片(logo_tvu_clut ...

  3. android Service not registered

    Caused by: java.lang.IllegalArgumentException: Service not registered:com.broadcom.bt.app.settings.S ...

  4. 3n+1问题

    #include <stdio.h> #include <math.h> // 算法竞赛的目标是编程对任意输入均得到正确的结果. // 请先独立完成,如果有困难可以翻阅本书代码 ...

  5. Codeforces--617B--Chocolate(规律)

     Chocolate Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit ...

  6. 【JLOI 2014】 松鼠的新家

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3631 [算法] 树上差分 [代码] #include<bits/stdc++. ...

  7. codevs1358棋盘游戏(状压dp)

    1358 棋盘游戏  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 大师 Master     题目描述 Description 这个游戏在一个有10*10个格子的棋盘上进行,初 ...

  8. Win10 计算机管理 打不开应急办法

    最近Win10重置以后,计算机管理打不开了,经过一番尝试,通过以下命令在cmd下面可以直接打开 compmgmt 或者compmgmt.msc打开 在次特做一个记录,以备急用

  9. JSP页面中path和basepath的含义

    今天在看代码时,发现程序使用了 request.getScheme() .不明白是什么意思,查了一下.结果整理如下: 1.request.getScheme() 返回当前链接使用的协议:一般应用返回h ...

  10. Spring Boot (20) 拦截器

    动态资源和静态资源 拦截器可以算是aop的一种实现,专门拦截对动态资源的后台请求,也就是拦截对控制层的请求,主要用于判断用户是否有权限请求后台.拦截器不会拦截静态资源,如spring boot默认静态 ...