UVA - 10674-Tangents
题意:给出两个圆,求它们的公切线,并依照一定格式输出
做法:模拟
代码:
#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const double eps=2e-5;
const double pi=acos(-1.0);
int dcmp(double x){return fabs(x)<eps? 0:x<0?-1:1;}
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator +(dot a){return dot(x+a.x,y+a.y);}
dot operator -(dot a){return dot(x-a.x,y-a.y);}
dot operator *(double a){return dot(x*a,y*a);}
double operator *(dot a){return x*a.y-y*a.x;}
dot operator /(double a){return dot(x/a,y/a);}
double operator /(dot a){return x*a.x+y*a.y;}
bool operator ==(dot a){return x==a.x&&y==a.y;}
void in(){scanf("%f%f",&x,&y);}
void out(){printf("%f %f\n",x,y);}
dot norv(){return dot(-y,x);}
dot univ(){double a=mod();return dot(x/a,y/a);}
dot ro(double a){return dot(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a));}
double mod(){return sqrt(x*x+y*y);}
double dis(dot a){return sqrt(pow(x-a.x,2)+pow(y-a.y,2));}
};
typedef pair<dot,dot> LL;
LL ans[10];
bool operator <(LL a,LL b)
{
return dcmp(a.first.x-b.first.x)!=0?dcmp(a.first.x-b.first.x)<0:
dcmp(a.first.y-b.first.y)<0;
}
int work(dot a,double r1,dot b,double r2)
{
int cnt;
double ang;
if(dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0&&dcmp(r1-r2)==0)
return -1;
if(dcmp(a.dis(b)+min(r1,r2)-max(r1,r2))<0)
return 0;
if(dcmp(a.dis(b)+min(r1,r2)-max(r1,r2))==0)
{
if(dcmp(r1-r2)>0)
ans[0].first=ans[0].second=a+(b-a).univ()*r1;
else
ans[0].first=ans[0].second=b+(a-b).univ()*r2;
return 1;
}
ang=acos((r1-r2)/a.dis(b));
ans[0].first=a+(b-a).ro(ang).univ()*r1;
ans[1].first=a+(b-a).ro(-ang).univ()*r1;
ang=pi-ang;
ans[0].second=b+(a-b).ro(-ang).univ()*r2;
ans[1].second=b+(a-b).ro(ang).univ()*r2;
cnt=2;
if(dcmp(a.dis(b)-r1-r2)==0)
{
ans[2].first=ans[2].second=a+(b-a).univ()*r1;
cnt=3;
}
if(dcmp(a.dis(b)-r1-r2)>0)
{
ang=acos((r1+r2)/a.dis(b));
ans[2].first=a+(b-a).ro(ang).univ()*r1;
ans[3].first=a+(b-a).ro(-ang).univ()*r1;
ans[2].second=b+(a-b).ro(ang).univ()*r2;
ans[3].second=b+(a-b).ro(-ang).univ()*r2;
cnt=4;
}
sort(ans,ans+cnt);
return cnt;
}
int main()
{
int i,cnt;
dot a,b;
double r1,r2;
while(cin>>a.x>>a.y>>r1>>b.x>>b.y>>r2)
{
if(a.x==0&&a.y==0&&r1==0&&b.x==0&&b.y==0&&r2==0)
return 0;
cnt=work(a,r1,b,r2);
cout<<cnt<<endl;
for(i=0;i<cnt;i++)
printf("%.5f %.5f %.5f %.5f %.5f\n",ans[i].first.x,ans[i].first.y,
ans[i].second.x,ans[i].second.y,ans[i].first.dis(ans[i].second));
}
}
Description
Problem B
Tangents
Input: standard input
Output: standard output
Time Limit: 2 seconds
You can see in the pictures below that two different circles can have at most four common tangents. Given the center and radius of two circles your job is to find the length of their common tangents and also the points where they touch the two circles.
Input
The input file contains several lines of inputs.
Each line contains six integers
x1 (-100<=x1<=100), y1 (-100<=y1<=100),
r1 (0<r1<=200), x2 (-100<=x2<=100),
y2 (-100<=y2<=100), r2 (0<r2<=200). Here
(x1, y1) and (x2, y2) are the coordinates of the center of the first circle and second circle respectively,
r1 is the radius of the first circle and r2 is the radius of the second circle.
Input is terminated by a line containing six zeroes.
Output
For each line of input you should produce one of more lines of output. The description of this output is given below.
First line of the output for each line of input contains an integer
n, which denotes the number of different tangents between the two circles. If there is infinite number of tangents between the two circles then the value of
n should be –1. If n is positive then next
n lines contains the description of each tangent. The description of the tangent contains five floating-point numbers
Sx, Sy, Tx,
Ty, L in a single line. Here
(Sx, Sy) is the point at which the tangent touches the first circle and
(Tx, Ty) is the point where the tangent touches the second circle and
L is the length of the tangent. All the floating-point numbers have five digits after the decimal point. Errors less than
2*10-5 will be ignored. The tangents should be printed in ascending order of
Sx and in case of a tie they should be printed in ascending order of
Sy.
Sample Input
Output for Sample Input
10 10 5 20 20 5 10 10 10 20 20 10 10 10 5 20 10 5 0 0 0 0 0 0 |
4 6.46447 13.53553 16.46447 23.53553 14.14214 10.00000 15.00000 20.00000 15.00000 10.00000 13.53553 6.46447 23.53553 16.46447 14.14214 15.00000 10.00000 15.00000 20.00000 10.00000 2 2.92893 17.07107 12.92893 27.07107 14.14214 17.07107 2.92893 27.07107 12.92893 14.14214 3 10.00000 5.00000 20.00000 5.00000 10.00000 10.00000 15.00000 20.00000 15.00000 10.00000 15.00000 10.00000 15.00000 10.00000 0.00000
|
Problem setter: Shahriar Manzoor. Member of Elite Problem Setters’ Panel
Special Thanks: Derek Kisman, Member of Elite Problem Setters’ Panel
Input
Output
Sample Input
Sample Output
Hint
Source
UVA - 10674-Tangents的更多相关文章
- ●UVA 10674 Tangents
题链: https://vjudge.net/problem/UVA-10674 题解: 计算几何,求两个圆的公切线. <算法竞赛入门经典——训练指南>P266,讲得很清楚的. 大致是分为 ...
- UVa 10674 (求两圆公切线) Tangents
题意: 给出两个圆的圆心坐标和半径,求这两个圆的公切线切点的坐标及对应线段长度.若两圆重合,有无数条公切线则输出-1. 输出是按照一定顺序输出的. 分析: 首先情况比较多,要一一判断,不要漏掉. 如果 ...
- 一位学长的ACM总结(感触颇深)
发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...
- .Uva&LA部分题目代码
1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...
- uva 1354 Mobile Computing ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5
- UVA 10564 Paths through the Hourglass[DP 打印]
UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...
- UVA 11404 Palindromic Subsequence[DP LCS 打印]
UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...
- UVA&&POJ离散概率与数学期望入门练习[4]
POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...
- UVA计数方法练习[3]
UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...
- UVA数学入门训练Round1[6]
UVA - 11388 GCD LCM 题意:输入g和l,找到a和b,gcd(a,b)=g,lacm(a,b)=l,a<b且a最小 g不能整除l时无解,否则一定g,l最小 #include &l ...
随机推荐
- HDU 4960 Another OCD Patient 简单DP
思路: 因为是对称的,所以如果两段是对称的,那么一段的前缀和一定等于另一段的后缀和.根据这个性质,我们可以预处理出这个数列的对称点对.然后最后一个对称段是从哪里开始的,做n^2的DP就可以了. 代码: ...
- ECNUOJ 2149 华丽的队列
华丽的队列 Time Limit:3000MS Memory Limit:65536KBTotal Submit:531 Accepted:68 Description 每年,都有很多新同学来到我们 ...
- OpenCV学习笔记09--通过cvPtr2D或指针算法绘制图形
练习:创建一个1000*1000的三通道图像,将其元素所有置0.以(200,50)和(400,200)为顶点绘制一个绿色平面 我们能够用两种方法来实现这一功能,一个是使用cvPtr2D,可是因为使用了 ...
- atitit.js 与c# java交互html5化的原理与总结.doc
atitit.js 与c# java交互html5化的原理与总结.doc 1. 实现html5化界面的要解决的策略 1 1.1. Js交互 1 1.2. 动态參数个数 1 1.3. 事件监听 2 2. ...
- android selector设置button点击效果(具体)以及常见问题
button的点击效果学习起来其实比較easy,此点对开发人员来说也是使用的比較频繁的一个知识点,与它相关的还有编辑框的获取焦点时改变背景颜色.选择button选择时改变字体颜色等等.这些其实都是用到 ...
- Lesson 2 Building your first web page: Part 1
In this ‘hands-on’ module we will be building our first web page in no time. We just need to quickly ...
- 26.angularJS $routeProvider
转自:https://www.cnblogs.com/best/tag/Angular/ O'Reilly书上的伪代码 var someModule = angular.module('someMod ...
- Xamarin大佬的地址
https://www.cnblogs.com/hlx-blogs/p/7266098.html http://www.cnblogs.com/GuZhenYin/p/6971069.html
- SQL Server 2005高可用性模式下创建数据库镜像
SQL Server 2005高可用性模式下创建数据库镜像 高可用性模式下创建数据库镜像 第一步: --创建镜像用数据库-在主服务器上操作 create database db_mirror on ...
- SQLHelper--java类
package richard; import java.beans.Statement; import java.sql.Connection; import java.sql.DriverMana ...