我们在上一篇文章中通过一个简单的样例算是入门卡尔曼滤波了。本文将以此为基础讨论一些技术细节。

卡尔曼滤波(Kalman Filter)

http://blog.csdn.net/baimafujinji/article/details/50646814

在上一篇文章中。我们已经对HMM和卡尔曼滤波的关联性进行了初步的讨论。參考文献【3】中将二者之间的关系归结为下表。

上表是什么意思呢?我们事实上能够以下的式子来表示,当中,w 和 v 分别表示状态转移 和 測量 过程中的不确定性,也即是噪声,既然是噪声就能够假设它们服从一个零均值的高斯分布。这事实上跟我们在上一篇文章中所给出的形式是一致的。也就是说我们觉得过去的状态假设是 xt-1。那么当前状态xt应该是 xt-1的一个线性变换。而这个预计过程事实上是有误差的,用一个零均值的高斯噪声(概率分布)来表达。

相似地,当前的測量值yt应该是真实值 xt 的一个线性变换。而这个測量过程仍然是有误差的,也用一个零均值的高斯噪声(概率分布)来表达。

      (1)

上一节中我们还讲过,在 [t0, t1] 时间段内的測量为Y,对应的预计为,则当t = t1 时, 称为X(t)的预计(或者称为滤波)。当然如今我们也只须要将注意力放在滤波上。所以终于要求的应该是以下这个式子

依据条件概率的链式法则以及马尔科夫链的无记忆性,再去掉常值系数的情况下,就能够得到以下的结论(假设你对有关数学公式记得不是非常清楚能够參考http://blog.csdn.net/baimafujinji/article/details/50441927)

当中,P( xt | y1, … , yt-1)就是Prediction(预測),由于它表示的意义是已知从1到t-1时刻的观測值y1, … , yt-1的情况下求 t 时刻的状态值xt

还有一方面,P( xt | y1, … , yt)就是Update,由于它表示当我们已经获得yt时。再对xt 进行的一个更新(或修正)。

依据马尔科夫链的无记忆性,可知P( yt | xt, y1, … , yt-1) = P( yt | xt) 。

就预測部分而言。我们希望引入xt-1。所以能够採用以下的方法(这事实上就是我们在处理普通贝叶斯网络时所用过的方法)

到此为止。事实上你应该能够看出来卡尔曼滤波就形成了一个递归求解的过程。也就是说。我们欲求P( xt | y1, … , yt-1),就须要先求P( xt-1 | y1, … , yt-1),而欲求P( xt-1 | y1, … , yt-1),就要先求P( xt-2 | y1, … , yt-1) ……结合上一篇文章介绍的内容,事实上能够总结卡尔曼滤波的步骤例如以下

也就是说当t = 1时。我们依据观測值y1去预计真实状态x1,这个过程服从一个高斯分布。

然后。当t = 2时,我们依据上一个观測值y1去预測当前的真实状态x2,在获得该时刻的真实观測值y2后,我们又能够预计出一个新的真实状态x2。这时就要据此对由y1预測的结果进行修正(Update),如此往复。

接下来,我们引入一个服从零均值高斯分布的(噪声)变量 Δxt-1

然后试着将Δxt和Δyt以Δxt-1的形式来给出,并且处于方便的考虑。我们忽略掉公式(1)中的控制项 BC。于是有

依据独立性假设,还可知例如以下结论(这些都是兴许计算推导过程中所须要的准备):

以下我们要做的事情就是推导卡尔曼滤波的五个公式,在上一篇文章中,我们很多其它地是从感性的角度给出了这些公式。并没有给出具体的数学推导,接下来我们就要来完毕这项任务。

综上我们已经完整地给出了卡尔曼滤波的理论推导。

对于结论性的东西。你当然能够直接拿来使用。

在一些软件包中,卡尔曼滤波无非是一条命令或者一个函数就能搞定。

我们之所以还在这里给出它的具体推导,主要是鉴于这样的思想事实上在机器学习中也被广泛地用到,所以了解这些技术细节仍然十分有意义。

===================================================================================================

假设你是图像处理的同道中人,欢迎增加图像处理算法交流群(单击链接查看群号)

參考文献:

【1】Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd Edition.

【2】秦永元,张洪钺,汪叔华,卡尔曼滤波与组合导航原理,西北工业大学出版社

【3】徐亦达博士关于卡尔曼滤波的公开课,http://v.youku.com/v_show/id_XMTM2ODU1MzMzMg.html

【4】卡尔曼滤波的原理以及在MATLAB中的实现,http://blog.csdn.net/revolver/article/details/37830675

卡尔曼滤波(Kalman Filter) 的进一步讨论的更多相关文章

  1. 关于卡尔曼滤波(Kalman Filter)的很好讲解

    http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies C#代码: double[] Data = new double[] { 0.39 ...

  2. Kalman Filter、Extended Kalman Filter以及Unscented Kalman Filter介绍

    模型定义 如上图所示,卡尔曼滤波(Kalman Filter)的基本模型和隐马尔可夫模型类似,不同的是隐马尔科夫模型考虑离散的状态空间,而卡尔曼滤波的状态空间以及观测空间都是连续的,并且都属于高斯分布 ...

  3. 卡尔曼滤波—Simple Kalman Filter for 2D tracking with OpenCV

    之前有关卡尔曼滤波的例子都比较简单,只能用于简单的理解卡尔曼滤波的基本步骤.现在让我们来看看卡尔曼滤波在实际中到底能做些什么吧.这里有一个使用卡尔曼滤波在窗口内跟踪鼠标移动的例子,原作者主页:http ...

  4. 卡尔曼滤波(Kalman Filter)在目标边框预测中的应用

    1.卡尔曼滤波的导论 卡尔曼滤波器(Kalman Filter),是由匈牙利数学家Rudolf Emil Kalman发明,并以其名字命名.卡尔曼出生于1930年匈牙利首都布达佩斯.1953,1954 ...

  5. 卡尔曼滤波器 Kalman Filter (转载)

    在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡 尔曼全名Rudolf Emil ...

  6. 无人驾驶技术之Kalman Filter原理介绍

    基本思想 以K-1时刻的最优估计Xk-1为准,预测K时刻的状态变量Xk/k-1,同时又对该状态进行观测,得到观测变量Zk,再在预测与观之间进行分析,或者说是以观测量对预测量进行修正,从而得到K时刻的最 ...

  7. GMM+Kalman Filter+Blob 目标跟踪

    转 http://www.cnblogs.com/YangQiaoblog/p/5462453.html ==========图片版================================== ...

  8. kalman filter卡尔曼滤波器- 数学推导和原理理解-----网上讲的比较好的kalman filter和整理、将预测值和观测值融和

    = 参考/转自: 1 ---https://blog.csdn.net/u010720661/article/details/63253509 2----http://www.bzarg.com/p/ ...

  9. [Math]理解卡尔曼滤波器 (Understanding Kalman Filter) zz

    1. 卡尔曼滤波器介绍 卡尔曼滤波器的介绍, 见 Wiki 这篇文章主要是翻译了 Understanding the Basis of the Kalman Filter Via a Simple a ...

随机推荐

  1. linux设置库文件加载包含路径

    第一种方式vim /etc/ld.so.conf 将要包含的路径添加到此文件中退出重新登录使配置生效或者执行命令source /etc/ld.so.conf 另一种方式利用LIBRARY_PATH和L ...

  2. Android彻底组件化demo发布

    今年6月份开始,我开始负责对"得到app"的android代码进行组件化拆分,在动手之前我查阅了很多组件化或者模块化的文章,虽然有一些收获,但是很少有文章能够给出一个整体且有效的方 ...

  3. 背包系列 hdu 3535 分组背包

    题意: 有n组工作,现在有T分钟时间去做一些工作.每组工作里有m个工作,并且类型为s,s类型可以为0,1,2,分别表示至少选择该组工作的一项,至多选择该工作的一项,不限制选择.每个工作有ci,gi两个 ...

  4. C# DataTable扩展方法

    在日常搬砖中,总结了一些简单的扩展方法. public static bool IsNullOrEmpty(this DataTable dt) { ; } public static bool Is ...

  5. Oracle数据库的自动备份脚本

    @echo off echo ================================================ echo Windows环境下Oracle数据库的自动备份脚本 echo ...

  6. 爬虫文件存储-2:MongoDB

    1.连接MongoDB 连接 MongoDB 我们需要使用 PyMongo 库里面的 MongoClient,一般来说传入 MongoDB 的 IP 及端口即可,第一个参数为地址 host,第二个参数 ...

  7. NFA到DFA实例

    下面图使用NFA表示的状态转换图, 使用子集构造法,有如下过程, ε-closure(0) = {0, 1, 2, 3, 4, 6, 7}初始值,令为AA = {0, 1, 2, 3, 4, 6, 7 ...

  8. BZOJ 1572 USACO 2009 Open 工作安排

    先把工作按照Deadline从小到大排序 然后按顺序取,deadline大于现在总用时就取,等于现在总用时就从前面已取的工作中找一个P最小的同它比较,取P较大的一个 用优先队列维护已取工作中P的最小值 ...

  9. PAT 1102 Invert a Binary Tree

    The following is from Max Howell @twitter: Google: 90% of our engineers use the software you wrote ( ...

  10. 8.1.1 Connection 对象

    Connect是sqllite3模块中最基本的也是最重要的一个类,其主要方法如下表所示: 方法 说明 execute(sql[,parameters]) 执行一条SQL语句 executemany(s ...