https://www.luogu.org/problem/show?pid=1034

题目描述

在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。

输入输出格式

输入格式:

n k xl y1 x2 y2 ... ...

xn yn (0<=xi,yi<=500)

输出格式:

输出至屏幕。格式为:

一个整数,即满足条件的最小的矩形面积之和。

输入输出样例

输入样例#1:

4 2
1 1
2 2
3 6
0 7
输出样例#1:

4

回溯+剪枝

搜索每个点,每次更新出矩阵的大小,当有矩阵彼此覆盖时,当前方案不可行、

 #include <algorithm>
#include <cstdio> inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N();
int n,k,x[],y[];
int ans=0x3f3f3f3f;
struct Matrix {
int x1,y1,x2,y2;
bool use;
Matrix() { use=; }
}matrix[]; #define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
inline bool _if(int x,int y,Matrix a)
{
return x>=a.x1&&x<=a.x2&&y>=a.y1&&y<=a.y2;
}
inline bool if_(Matrix a,Matrix b)
{
if(_if(a.x1,a.y1,b)) return true;
if(_if(a.x2,a.y1,b)) return true;
if(_if(a.x1,a.y2,b)) return true;
if(_if(a.x2,a.y2,b)) return true;
return false;
}
void DFS(int now)
{
Matrix tmp; int sum=;
for(int i=; i<=k; ++i)
{
if(!matrix[i].use) continue;
sum+=(matrix[i].x2-matrix[i].x1)*
(matrix[i].y2-matrix[i].y1);
for(int j=i+; j<=k; ++j)
if(matrix[j].use&&if_(matrix[i],matrix[j])) return ;
}
if(sum>ans) return ;
if(now>n) { ans=sum; return ; }
for(int i=; i<=k; ++i)
{
tmp=matrix[i];
if(!matrix[i].use)
{
matrix[i].use=;
matrix[i].x1=matrix[i].x2=x[now];
matrix[i].y1=matrix[i].y2=y[now];
}
else
{
matrix[i].x1=min(matrix[i].x1,x[now]);
matrix[i].x2=max(matrix[i].x2,x[now]);
matrix[i].y1=min(matrix[i].y1,y[now]);
matrix[i].y2=max(matrix[i].y2,y[now]);
}
DFS(now+); matrix[i]=tmp;
} return ;
} int Presist()
{
read(n);read(k);
for(int i=; i<=n; ++i)
read(x[i]),read(y[i]);
DFS(); printf("%d\n",ans);
return ;
} int Aptal=Presist();
int main(){;}

洛谷——P1034 矩形覆盖的更多相关文章

  1. 洛谷P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...

  2. 洛谷 P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1​(1,11,1),p_2p2​( ...

  3. 洛谷 - P1034 - 矩形覆盖 - dfs

    https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy ...

  4. [NOIP2002] 提高组 洛谷P1034 矩形覆盖

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  5. 洛谷 P2218 [HAOI2007]覆盖问题 解题报告

    P2218 [HAOI2007]覆盖问题 题目描述 某人在山上种了\(N\)棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他 ...

  6. P1034 矩形覆盖

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  7. 洛谷 P1191 矩形 题解

    P1191 矩形 题目描述 给出一个 \(n \times n\)的矩阵,矩阵中,有些格子被染成白色,有些格子被染成黑色,现要求矩阵中白色矩形的数量 输入格式 第一行,一个整数\(n\),表示矩形的大 ...

  8. 洛谷——P2082 区间覆盖(加强版)

    P2082 区间覆盖(加强版) 题目描述 已知有N个区间,每个区间的范围是[si,ti],请求出区间覆盖后的总长. 输入输出格式 输入格式: N s1 t1 s2 t2 …… sn tn 输出格式: ...

  9. 洛谷 P1324 矩形分割

    P1324 矩形分割 题目描述 出于某些方面的需求,我们要把一块N×M的木板切成一个个1×1的小方块. 对于一块木板,我们只能从某条横线或者某条竖线(要在方格线上),而且这木板是不均匀的,从不同的线切 ...

随机推荐

  1. [App Store Connect帮助]二、 添加、编辑和删除用户(5)创建一个沙盒测试员帐户

    如果您的 App 使用了 App 内购买项目或 Apple Pay,您可以在 App Store Connect 中创建沙盒测试员帐户,以便您向用户提供该 App 前,可以使用该帐户在测试环境中运行您 ...

  2. 设置myeclipse的JSP、HTML的页面编码格式

    JSP编码格式: 点击菜单上的window--->preferences 在弹出的对话框中点击MyEclise--->Files and Editors--->JSP, 在Encod ...

  3. 回收maven私仓过期垃圾

    login->scheduled tasks->add

  4. 初学者Android studio安装

    学习过java基础,最近趁着大量课余时间想学习Android开发.百度很多资料Android studio,由Google开发的开发工具,那就不需要再多说.对于初学者的我来说,一定足够用了.此文主要介 ...

  5. JS高级——静态成员与实例成员

    静态成员:构造函数的属性和方法 实例成员:实例化之后对象的属性和方法 // $("#id").css(); // $("#id").text(); // $.t ...

  6. SQL基本操作——表的创建

    通过代码方式创建数据库 create database MyDatabaseNew on primary ( --名字 name='MyDatabaseNew_data', --路径 filename ...

  7. 检索COM类工厂中CLSID 为 {000209FF-0000-0000-C000-000000000046}的组件时失败, 原因是出现以下错误: 80070005

    主要问题原因是Word权限配置问题 解决方案: 控制面板-管理工具-组件服务-计算机-我的电脑-DCOM配置 在列表中找到microsoft word97-2003 document 右键选择属性,选 ...

  8. jsp 文件下载

    有的时候一个模板的下载,这种简单的下载服务端已存在文件功能,就可以方便的通过jsp文件下载的方式来轻松实现. //jsp 页面 js /** * 导出角色 */ function exportRole ...

  9. Zynq7000系列之芯片系统结构概述

    相比较经典的FPGA,Zynq7000系列最大的特点是将处理系统PS和可编程资源PL分离开来,固化了PS系统的存在,实现了真正意义上的SOC(System On Chip). 1.  Zynq7000 ...

  10. C# 字符串的入门

    1."@"表示字符串中的"\"不当成转义符. 2.转义符或者特殊处理的一些字符只是针对于代码中直接写出的字符串中,对于程序运行中读取出来的转义符或者特殊处理的字 ...