题意:

  给出n个城市和m条路,每个城市只能经过一次,想要旅游所有的城市,求需要的最小花费(路径的长度)。

分析:

  做题之前,首先要知道什么是完美匹配。不然题目做了却不知道为什么可以用这个方法来做。完美匹配{X,Y| E},X、Y集合都有n个点(必须相等),它们必须一对一的匹配,并且所有点都要匹配。

  对于此题,每个点都有且只有走一次。把每个点都拆为 i与 i'两个点,i值负责出边(就是i点只有出度),i'负责入边。这样就有了两个集合。集合内的点不会有联系。集合之间的点有联系,但是最后只有是一一对应的关系。

  也许说得不太明白。明白了,就知道这题什么意思了。发现解题只需要用模版。

  建边+ 模版。

  由于最佳匹配,求出来的是边的权值和最大的匹配。而这题要求的是权值和最小。有一个常用的方法,把边权改为负的,就是直接加个负号。在模版中,因为不能匹配返回-1,为了一致性,所以改为1。最后得到的值乘以-1就是我们需要的值。  

  第一次做此题没有理解多少,写了题解(帮助自己理解)也没讲多少。现在重新修改,感觉自己理解得深了。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=, INF=0x3f3f3f3f;
int Map[N][N],mat1[N],mat2[N];//匹配上的左右集合
int KM(int m,int n)
{
int s[N],t[N],a[N],b[N];
int i,j,k,p,q,ans=;
for(i=;i<m;i++)
{
a[i]=-INF;
for(j=;j<n;j++)
a[i]=Map[i][j]>a[i]?Map[i][j]:a[i];
if(a[i]==-INF) return ;//cannot match
}
memset(b,,sizeof(b));
memset(mat1,-,sizeof(mat1));
memset(mat2,-,sizeof(mat2));
for(i=;i<m;i++)
{
memset(t,-,sizeof(t));
p=q=;
for(s[]=i;p<=q&&mat1[i]<;p++)
{
for(k=s[p],j=;j<n&&mat1[i]<;j++)
{
if(a[k]+b[j]==Map[k][j]&&t[j]<)
{
s[++q]=mat2[j]; t[j]=k;
if(s[q]<)
for(p=j;p>=;j=p)
{
mat2[j]=k=t[j];p=mat1[k]; mat1[k]=j;
}
}
}
}
if(mat1[i]<)
{
i--,p=INF;
for(k=;k<=q;k++)
{
for(j=;j<n;j++)
if(t[j]<&&a[s[k]]+b[j]-Map[s[k]][j]<p)
p=a[s[k]]+b[j]-Map[s[k]][j];
}
for(j=;j<n;j++) b[j]+=t[j]<?:p;
for(k=;k<=q;k++) a[s[k]]-=p;
}
}
for(i=;i<m;i++) ans+=Map[i][mat1[i]];
return ans;
}
void init()
{
for(int i=;i<N;i++)
for(int j=;j<N;j++)
Map[i][j]=-INF;
}
int main()
{
//freopen("test.txt","r",stdin);
int n,i,j,m,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
while(m--)
{
scanf("%d%d%d",&i,&j,&k);
i--;j--;k=-k;
Map[i][j]=max(Map[i][j],k);
}
printf("%d\n",-*KM(n,n));
}
return ;
}

hdu1853 Cyclic Tour 完美匹配 验证模版的更多相关文章

  1. hdu1853 Cyclic Tour (二分图匹配KM)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  2. HDU1853 Cyclic Tour

    Cyclic Tour                                                                                Time Limi ...

  3. hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  4. HDU1853 Cyclic Tour(最小费用最大流)

    题目大概说给一张有向图,每条边都有权值,要选若干条边使其形成若干个环且图上各个点都属于且只属于其中一个环,问选的边的最少权值和是多少. 各点出度=入度=1的图是若干个环,考虑用最小费用最大流: 每个点 ...

  5. HDU-1853 Cyclic Tour

    最小权值环覆盖问题:用几个环把所有点覆盖,求所选取的边最小的权值之和. 拆点思想+求最小转求最大+KM算法 #include <cstdlib> #include <cstdio&g ...

  6. hdu 1853 Cyclic Tour 最大权值匹配 全部点连成环的最小边权和

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) ...

  7. HDU 3488 Tour (最大权完美匹配)【KM算法】

    <题目链接> 题目大意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每个点只能走一次)的最小费用.题目保证至少存在一个环满足条件. 解题分析: 因为要求 ...

  8. 最大流增广路(KM算法) HDOJ 1853 Cyclic Tour

    题目传送门 /* KM: 相比HDOJ_1533,多了重边的处理,还有完美匹配的判定方法 */ #include <cstdio> #include <cmath> #incl ...

  9. ZOJ-3933 Team Formation (二分图最佳完美匹配)

    题目大意:n个人,分为两个阵营.现在要组成由若干支队伍,每支队伍由两个人组成并且这两个人必须来自不同的阵营.同时,每个人都有m个厌恶的对象,并且厌恶是相互的.相互厌恶的人不能组成一支队伍.问最多能组成 ...

随机推荐

  1. MessageFormat.format()用法

    1.java.text.Format的继承结构如下   2.MessageFormat模式 FormatElement { ArgumentIndex }:是从0开始的入参位置索引 { Argumen ...

  2. 获取第n天日期

    function datezh(s){ return s = s>9 ? s:"0"+s } function dateTime(t){ var getNowTime = v ...

  3. [frontend] 根据文字长度 自适应宽度 自适应高度+ Uncaught ReferenceError: xxx is not defined at HTMLDivElement.onclick

    CSS一行代码就可以解决第一个问题: 1.1 根据文字长度,自适应标签宽度 解决方法:把width的设置删掉,加一行代码 display:table; .tag-footdetail{  /*widt ...

  4. [luogu1627 CQOI2009] 中位数 (乱搞)

    传送门 Solution 好水的题(ーー;) Code //By Menteur_Hxy #include <map> #include <queue> #include &l ...

  5. [CodeForces]908D New Year and Arbitrary Arrangement

    设状态f[i][j]表示有i个a,j个ab的期望 发现如果i+j>=k的话就再来一个b就行了. #include <iostream> #include <cstdio> ...

  6. 1.sts的下载安装

    sts的官方下载如下: http://spring.io/tools3/sts/all/ 将下载后的压缩文件解压,在解压后的sts-bundle下的sts-3.9.1RELEASE目录中STS.exe ...

  7. Eureka 服务的注册和发现

    二.Eureka 服务端 1.新建一个 maven module 子项目 microservicecloud-eureka-server 2.pom.xml <project xmlns=&qu ...

  8. 运行npm run watch时报:events.js:182 throw er; // Unhandled 'error' event

    I had this issue i did the following steps and i have no issues anymore: Delete node_modules directo ...

  9. 一个表空间使用率查询sql的优化

    话不多说,直接上运行计划: SQL> set lines 500; SQL> set pagesize 9999; SQL> set long 9999; SQL> selec ...

  10. Oracle GoldenGate 支持 从SAP HANA database抽取或者复制数据到SAP HANA database 吗?

    Oracle GoldenGate 支持 从SAP  HANA database抽取或者复制数据到SAP HANA database 吗? 来源于: Does Oracle GoldenGate Su ...