hdu1853 Cyclic Tour 完美匹配 验证模版
题意:
给出n个城市和m条路,每个城市只能经过一次,想要旅游所有的城市,求需要的最小花费(路径的长度)。
分析:
做题之前,首先要知道什么是完美匹配。不然题目做了却不知道为什么可以用这个方法来做。完美匹配{X,Y| E},X、Y集合都有n个点(必须相等),它们必须一对一的匹配,并且所有点都要匹配。
对于此题,每个点都有且只有走一次。把每个点都拆为 i与 i'两个点,i值负责出边(就是i点只有出度),i'负责入边。这样就有了两个集合。集合内的点不会有联系。集合之间的点有联系,但是最后只有是一一对应的关系。
也许说得不太明白。明白了,就知道这题什么意思了。发现解题只需要用模版。
建边+ 模版。
由于最佳匹配,求出来的是边的权值和最大的匹配。而这题要求的是权值和最小。有一个常用的方法,把边权改为负的,就是直接加个负号。在模版中,因为不能匹配返回-1,为了一致性,所以改为1。最后得到的值乘以-1就是我们需要的值。
第一次做此题没有理解多少,写了题解(帮助自己理解)也没讲多少。现在重新修改,感觉自己理解得深了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=, INF=0x3f3f3f3f;
int Map[N][N],mat1[N],mat2[N];//匹配上的左右集合
int KM(int m,int n)
{
int s[N],t[N],a[N],b[N];
int i,j,k,p,q,ans=;
for(i=;i<m;i++)
{
a[i]=-INF;
for(j=;j<n;j++)
a[i]=Map[i][j]>a[i]?Map[i][j]:a[i];
if(a[i]==-INF) return ;//cannot match
}
memset(b,,sizeof(b));
memset(mat1,-,sizeof(mat1));
memset(mat2,-,sizeof(mat2));
for(i=;i<m;i++)
{
memset(t,-,sizeof(t));
p=q=;
for(s[]=i;p<=q&&mat1[i]<;p++)
{
for(k=s[p],j=;j<n&&mat1[i]<;j++)
{
if(a[k]+b[j]==Map[k][j]&&t[j]<)
{
s[++q]=mat2[j]; t[j]=k;
if(s[q]<)
for(p=j;p>=;j=p)
{
mat2[j]=k=t[j];p=mat1[k]; mat1[k]=j;
}
}
}
}
if(mat1[i]<)
{
i--,p=INF;
for(k=;k<=q;k++)
{
for(j=;j<n;j++)
if(t[j]<&&a[s[k]]+b[j]-Map[s[k]][j]<p)
p=a[s[k]]+b[j]-Map[s[k]][j];
}
for(j=;j<n;j++) b[j]+=t[j]<?:p;
for(k=;k<=q;k++) a[s[k]]-=p;
}
}
for(i=;i<m;i++) ans+=Map[i][mat1[i]];
return ans;
}
void init()
{
for(int i=;i<N;i++)
for(int j=;j<N;j++)
Map[i][j]=-INF;
}
int main()
{
//freopen("test.txt","r",stdin);
int n,i,j,m,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
while(m--)
{
scanf("%d%d%d",&i,&j,&k);
i--;j--;k=-k;
Map[i][j]=max(Map[i][j],k);
}
printf("%d\n",-*KM(n,n));
}
return ;
}
hdu1853 Cyclic Tour 完美匹配 验证模版的更多相关文章
- hdu1853 Cyclic Tour (二分图匹配KM)
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)Total ...
- HDU1853 Cyclic Tour
Cyclic Tour Time Limi ...
- hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)Total ...
- HDU1853 Cyclic Tour(最小费用最大流)
题目大概说给一张有向图,每条边都有权值,要选若干条边使其形成若干个环且图上各个点都属于且只属于其中一个环,问选的边的最少权值和是多少. 各点出度=入度=1的图是若干个环,考虑用最小费用最大流: 每个点 ...
- HDU-1853 Cyclic Tour
最小权值环覆盖问题:用几个环把所有点覆盖,求所选取的边最小的权值之和. 拆点思想+求最小转求最大+KM算法 #include <cstdlib> #include <cstdio&g ...
- hdu 1853 Cyclic Tour 最大权值匹配 全部点连成环的最小边权和
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) ...
- HDU 3488 Tour (最大权完美匹配)【KM算法】
<题目链接> 题目大意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每个点只能走一次)的最小费用.题目保证至少存在一个环满足条件. 解题分析: 因为要求 ...
- 最大流增广路(KM算法) HDOJ 1853 Cyclic Tour
题目传送门 /* KM: 相比HDOJ_1533,多了重边的处理,还有完美匹配的判定方法 */ #include <cstdio> #include <cmath> #incl ...
- ZOJ-3933 Team Formation (二分图最佳完美匹配)
题目大意:n个人,分为两个阵营.现在要组成由若干支队伍,每支队伍由两个人组成并且这两个人必须来自不同的阵营.同时,每个人都有m个厌恶的对象,并且厌恶是相互的.相互厌恶的人不能组成一支队伍.问最多能组成 ...
随机推荐
- ListUtil集合操作常用方法类
* 集合操作常用方法类. * <p> * * @author 柯 */ public class ListUtil { /** * 判断List不为空,非空返回true,空则返回false ...
- NOIP2015 DAY2 T1跳石头
传送门 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N 块 ...
- iptables 实现内网转发上网
介绍 通过iptables做nat转发实现所有内网服务器上网. 操作 首先开启可以上网的服务器上的内核路由转发功能.这里我们更改/etc/sysctl.conf 配置文件. [root@web1 /] ...
- MYSQL(一) 简单语法
MYSQL(一) 简单语法 1.默认约束:mysql里面DEFAULT关键字后面是不用加括号的 --1.1 创建数据库 mysql> create database holly; Query O ...
- django异常--数据库同步
在新创建的Django项目中执行makemigrations时,遇到: 而仔细观察,这个报错的app名字是我们之前项目中的app名字,但现在却在我们当前的项目中报错了.究其原因,则是因为之前的项目中的 ...
- 如鹏网JAVA培训笔记1(晓伟整理)
JDK(Java Developmet Kit) JRE(Java RunTime Environment)的区别: JRE只有运行JAVA程序的环境,没有开发相关的工具;JDK=JRE+开发相关的工 ...
- 暑假集训D12总结
刷题 今天终于不考试= = 上午刷了一大圈线段树板子题,于是算是学会了Zkw线段树= = 下午昨天的dalao又来讲几何,然而仍然没有笔记= = 于是刷了一大圈计算几何的水题= =,并没哟啥可以写出题 ...
- Eclipse全局搜索
按[Ctrl]+[H] 搜索时支持一些正则表达式. 参考: http://blog.csdn.net/huaweitman/article/details/38709323
- HDU 5184
卡特兰数的一个变形而已. 一个经典的习题变过来的: n+m个人排队买票,并且满足,票价为50元,其中n个人各手持一张50元钞票,m个人各手持一张100元钞票,除此之外大家身上没有任何其他的钱币,并且初 ...
- Exchanger源代码剖析
Exchanger是一个针对线程可以结对交换元素的同步器.每条线程把某个对象作为參数调用exchange方法,与伙伴线程进行匹配.然后再函数返回的时接收伙伴的对象.另外.Exchanger内部实现採用 ...