题目描述

假设有来自m 个不同单位的代表参加一次国际会议。每个单位的代表数分别为ri (i =1,2,……,m)。

会议餐厅共有n 张餐桌,每张餐桌可容纳ci (i =1,2,……,n)个代表就餐。

为了使代表们充分交流,希望从同一个单位来的代表不在同一个餐桌就餐。试设计一个算法,给出满足要求的代表就餐方案。

对于给定的代表数和餐桌数以及餐桌容量,编程计算满足要求的代表就餐方案。

输入输出格式

输入格式:

第1 行有2 个正整数m 和n,m 表示单位数,n 表示餐桌数,1<=m<=150, 1<=n<=270。

第2 行有m 个正整数,分别表示每个单位的代表数。

第3 行有n 个正整数,分别表示每个餐桌的容量。

输出格式:

如果问题有解,第1 行输出1,否则输出0。接下来的m 行给出每个单位代表的就餐桌号。如果有多个满足要求的方案,只要输出1 个方案。

解题思路:

建立源点汇点。

源点向公司连边流量为公司人数。

公司向餐桌连边流量为$1$

餐桌向汇点连边流量为就餐人数上限。

最大流跑一下就好了。

代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
const int oo=0x3f3f3f3f;
namespace stb{
template<class tnt>
class queue{
#define INF 1000000
public:
queue(){h=;t=;}
int nxt(int x){if(x+==INF)return ;return x+;}
void clear(void){h=;t=;}
void push(tnt x){t=nxt(t);l[t]=x;}
void pop(void){h=nxt(h);}
tnt front(void){return l[h];}
bool empty(void){return nxt(t)==h;}
private:
tnt l[INF];
int h,t;
#undef INF
};
};
struct pnt{
int hd;
int lyr;
int now;
}p[];
struct ent{
int twd;
int lst;
int vls;
}e[];
int cnt;
int n,m;
int s,t;
int N;
stb::queue<int>Q;
void ade(int f,int t,int v)
{
cnt++;
e[cnt].twd=t;
e[cnt].vls=v;
e[cnt].lst=p[f].hd;
p[f].hd=cnt;
return ;
}
bool Bfs(void)
{
Q.clear();
for(int i=;i<=N;i++)
p[i].lyr=;
p[s].lyr=;
Q.push(s);
while(!Q.empty())
{
int x=Q.front();
Q.pop();
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(p[to].lyr==&&e[i].vls>)
{
p[to].lyr=p[x].lyr+;
if(to==t)
return true;
Q.push(to);
}
}
}
return false;
}
int Dfs(int x,int fll)
{
if(x==t)
return fll;
for(int& i=p[x].now;i;i=e[i].lst)
{
int to=e[i].twd;
if(p[to].lyr==p[x].lyr+&&e[i].vls>)
{
int ans=Dfs(to,std::min(fll,e[i].vls));
if(ans>)
{
e[i].vls-=ans;
e[((i-)^)+].vls+=ans;
return ans;
}
}
}
return ;
}
int Dinic(void)
{
int ans=;
while(Bfs())
{
for(int i=;i<=N;i++)
p[i].now=p[i].hd;
int dlt;
while(dlt=Dfs(s,oo))
ans+=dlt;
}
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
s=n+m+;
t=s+;
N=t;
int sum=;
for(int i=;i<=n;i++)
{
int v;
scanf("%d",&v);
sum+=v;
ade(s,i,v);
ade(i,s,);
for(int j=m;j;j--)
{
ade(i,j+n,);
ade(j+n,i,);
}
}
for(int i=;i<=m;i++)
{
int v;
scanf("%d",&v);
ade(i+n,t,v);
ade(t,i+n,v);
}
if(Dinic()!=sum)
{
printf("%d\n",);
return ;
}
printf("%d\n",);
for(int i=;i<=n;i++)
{
for(int j=p[i].hd;j;j=e[j].lst)
{
int to=e[j].twd;
if(to>n&&e[j].vls==)
printf("%d ",to-n);
}
puts("");
}
return ;
}

LuoguP3254 圆桌问题(最大流)的更多相关文章

  1. Luogu P3254 圆桌问题(最大流)

    P3254 圆桌问题 题面 题目描述 假设有来自 \(m\) 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 \(r_i (i =1,2,--,m)\) . 会议餐厅共有 \(n\) 张餐桌 ...

  2. 【P3254】圆桌问题(最大流,洛谷)

    看到题目,产生第一反应,是否可以匹配的是这么多.那么连边跑一遍最大流就行了. 从源点向每个单位连一条长度为l的边,然后所有单位和餐桌分别连边,流量为1,所有餐桌向汇点连边,流量为餐桌容量.然后跑一遍最 ...

  3. LibreOJ 6004 圆桌聚餐 (最大流)

    题解:天啊,这道最大流真是水的一批……只需要每张桌子向每个单位建一条容量为1的边,源点向桌子建边,容量为桌子能坐的人数;单位向汇点建边,容量为单位人数即可,然后根据单位与桌子的连边值是否为一来了解每个 ...

  4. 洛谷P3254 圆桌问题(最大流)

    题意 $m$个不同单位代表参加会议,第$i$个单位有$r_i$个人 $n$张餐桌,第$i$张可容纳$c_i$个代表就餐 同一个单位的代表需要在不同的餐桌就餐 问是否可行,要求输出方案 Sol 比较zz ...

  5. 洛谷.3254.圆桌问题(最大流ISAP)

    题目链接 日常水题 还是忍不住吐槽这题奇怪的评价 #include <cstdio> #include <cctype> #include <algorithm> ...

  6. 网络流24T

    说出来你们可能不信,我咕了三个多星期了,今晚忽然不想再写题了,(写自闭了,把这边整理一下 1. 洛谷P2756 飞行员配对问题 二分图匹配: #include <bits/stdc++.h> ...

  7. 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)

    ------------------------------------------------------------------------------------ 17/24 --------- ...

  8. 【PowerOJ1740&网络流24题 圆桌聚餐】(最大流)

    题意: 来自n个不同国家的代表开会,每个国家代表数为ci 会场有m张圆桌,每张桌子可容纳mi人 不希望有同一个国家的代表在同一张桌子上就餐 设计一个合法方案 (n,m<=300) 思路:最大流, ...

  9. Libre 6004 「网络流 24 题」圆桌聚餐(网络流,最大流)

    Libre 6004 「网络流 24 题」圆桌聚餐(网络流,最大流) Description 假设有来自n个不同单位的代表参加一次国际会议.每个单位的代表数分别为 ri.会议餐厅共有m张餐桌,每张餐桌 ...

随机推荐

  1. [APIO2014]回文串 后缀自动机_Manancher_倍增

    Code: // luogu-judger-enable-o2 #include <cstdio> #include <algorithm> #include <cstr ...

  2. [HAOI2007]理想的正方形 单调队列 暴力

    Code: #include<cstdio> #include<queue> #include<algorithm> using namespace std; #d ...

  3. JavaScript:理解prototype与__proto__,原型与原型链

    JS中的继承是原型继承,通过原型实现的.为了理解原型,我想先讲讲对象的内部属性[[prototype]]和属性__proto__,函数的属性prototype. 对象的内部属性[[prototype] ...

  4. *Mapper.xml文件头

    <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE mapper PUBLIC "-// ...

  5. 【Henu ACM Round#19 B】 Luxurious Houses

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 从右往左维护最大值. 看到比最大值小(或等于)的话.就递增到比最大值大1就好. [代码] #include <bits/std ...

  6. ArcGIS api for javascript——渲染-使用唯一值渲染

    描述 本例使用唯一值渲染器来作为美国的符号.每个州有一个字符串属性"SUB_REGION"表示它的国家的地区.UniqueValueRenderer.addValue()方法被用来 ...

  7. 【Hibernate步步为营】--多对多映射具体解释

    上篇文章具体讨论了一对多映射,在一对多映射中单向的关联映射会有非常多问题,所以不建议使用假设非要採用一对多的映射的话能够考虑使用双向关联来优化之间的关系,一对多的映射事实上质上是在一的一端使用< ...

  8. DDR工作原理

    DDR SDRAM全称为Double Data Rate SDRAM,中文名为“双倍数据流SDRAM”.DDR SDRAM在原有的SDRAM的基础上改进而来.也正因为如此,DDR能够凭借着转产成本优势 ...

  9. powerdesigner导出sql

    http://jingyan.baidu.com/article/7082dc1c48960ee40a89bd38.html 生成注释 http://wangjingyi.iteye.com/blog ...

  10. 分享一个vueui axios-mock-adapter 中的用法

    import axios from 'axios'; import MockAdapter from 'axios-mock-adapter'; import { LoginUsers, Users ...