UVa 1151 Buy or Build【最小生成树】
题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费
首先想kruskal算法中,被加入的边已经是最优的了,所以当选择完套餐后,之前被丢弃的边也不会再进入最小生成树
然后就可以先求一次原图的最小生成树,保存下进入最小生成树的n-1条边
再枚举选择的套餐的情况,再求最小生成树,这里用的二进制法枚举 最后维护一个最小值就可以了
思路虽然看懂了,可是代码根本就写不出来,看着标程写的,最后还是改了那么久-- sad----------
#include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std; #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) typedef long long LL;
const int INF = (<<)-;
const int mod=;
const int maxn=;
const int maxq=; int n;
int x[maxn],y[maxn],cost[maxn];
vector<int> subn[maxn]; int p[maxn];
int find(int x) {return p[x]!=x? p[x]=find(p[x]):x;} struct edge{
int u,v,d;
edge(int u,int v,int d):u(u),v(v),d(d) {}
bool operator <(const edge& rhs) const{
return d<rhs.d;}
}; int mst(int cnt,const vector<edge>& e,vector<edge>& used){
if(cnt==) return ;
int m=e.size();
int ans=;
used.clear();
for(int i=;i<m;i++){
int u=find(e[i].u),v=find(e[i].v);
int d=e[i].d;
if(u!=v){
p[u]=v;
ans+=d;
used.push_back(e[i]);
if(--cnt==) break;
}
}
return ans;
} int main(){
// freopen("in.txt","r",stdin);
// freopen("outttttttt.txt","w",stdout);
int T,q;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&q);
for(int i=;i<q;i++){
int cnt;
scanf("%d %d",&cnt,&cost[i]);
subn[i].clear();
while(cnt--){
int u;
scanf("%d",&u);
subn[i].push_back(u-);
}
} for(int i=;i<n;i++) scanf("%d %d",&x[i],&y[i]); vector<edge> e,need; for(int i=;i<n;i++)
for(int j=i+;j<n;j++){
int c=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
e.push_back(edge(i,j,c));
} for(int i=;i<n;i++) p[i]=i;
sort(e.begin(),e.end()); int ans=mst(n,e,need); for(int mask=;mask<(<<q);mask++){ for(int i=;i<n;i++) p[i]=i;
int cnt=n,c=; for(int i=;i<q;i++) if(mask & (<<i)){
c+=cost[i];
for(int j=;j<subn[i].size();j++){
int u=find(subn[i][j]),v=find(subn[i][]);
if(u!=v){p[u]=v;cnt--;}
}
}
vector<edge> dummy;
ans=min(ans,c+mst(cnt,need,dummy));
}
printf("%d\n",ans);
if(T) printf("\n");
}
return ;
}
UVa 1151 Buy or Build【最小生成树】的更多相关文章
- UVa 1151 - Buy or Build(最小生成树)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1151 Buy or Build MST(最小生成树)
题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...
- UVA 1151 Buy or Build (最小生成树)
先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...
- UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)
题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...
- uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)
最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...
- UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)
题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...
- UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)
题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...
- UVA 1151 买还是建(最小生成树)
买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...
- UVA 1151二进制枚举子集 + 最小生成树
题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...
随机推荐
- vue Render scopedSlots
render 中 slot 的一般默认使用方式如下: this.$slots.default 对用 template的<slot>的使用没有name . 想使用多个slot 的话.需要对s ...
- ThinkPHP5.0框架开发--第7章 TP5.0数据库操作
ThinkPHP5.0框架开发--第7章 TP5.0数据库操作 第7章 TP5.0数据库操作 ===================================================== ...
- nyoj--1023--还是回文(动态规划)
还是回文 时间限制:2000 ms | 内存限制:65535 KB 难度:3 描述 判断回文串很简单,把字符串变成回文串也不难.现在我们增加点难度,给出一串字符(全部是小写字母) ...
- 带你玩转Visual Studio——带你理解多字节编码与Unicode码
目录(?)[-] 多字节字符与宽字节字符 char与wchar_t string与wstring string 与 wstring的相关转换 字符集Charcater Set与字符编码Encoding ...
- 中文版 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 摘要 最先进的目标检测网络依靠区域提出算法 ...
- Android 去掉TabLayout下的阴影,AppBarLayout下的阴影
开始还以为是TabLayout在高版本系统上的特殊表现呢,没有在意,UI提出说感觉不好看就查了一下,原来是在TabLayout放在AppBarLayout里面才有这样的效果,只需要对AppBarLay ...
- Jlink如何校验Hex
打开SEGGER J-Flash ARM,记住必须设置好工程属性后才能校验,否则校验和为0 设置好工程属性后,直接将Hex拖入到工程中即可.在LOG窗口中会显示CRC的值 如何校验芯片中的程序的版本号 ...
- Golang 中的 面向对象: 方法, 类, 方法继承, 接口, 多态的简单描述与实现
前言: Golang 相似与C语言, 基础语法与C基本一致,除了广受争议的 左花括号 必须与代码同行的问题, 别的基本差不多; 学会了C, 基本上万变不离其宗, 现在的高级语言身上都能看到C的影子; ...
- canvas 连线曲线图封装
$.fn.hChart=function (opt) { var setting=$.extend({ className:'', data:[] },opt); var tbody=this; va ...
- HDU-2896 病毒侵袭 字符串问题 AC自动机
题目链接:https://cn.vjudge.net/problem/HDU-2896 题意 中文题 给一些关键词和一个字符串,问字符串里包括了那几种关键词 思路 直接套模版 改insert方法,维护 ...