题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费

首先想kruskal算法中,被加入的边已经是最优的了,所以当选择完套餐后,之前被丢弃的边也不会再进入最小生成树

然后就可以先求一次原图的最小生成树,保存下进入最小生成树的n-1条边

再枚举选择的套餐的情况,再求最小生成树,这里用的二进制法枚举 最后维护一个最小值就可以了

思路虽然看懂了,可是代码根本就写不出来,看着标程写的,最后还是改了那么久-- sad----------

 #include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std; #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) typedef long long LL;
const int INF = (<<)-;
const int mod=;
const int maxn=;
const int maxq=; int n;
int x[maxn],y[maxn],cost[maxn];
vector<int> subn[maxn]; int p[maxn];
int find(int x) {return p[x]!=x? p[x]=find(p[x]):x;} struct edge{
int u,v,d;
edge(int u,int v,int d):u(u),v(v),d(d) {}
bool operator <(const edge& rhs) const{
return d<rhs.d;}
}; int mst(int cnt,const vector<edge>& e,vector<edge>& used){
if(cnt==) return ;
int m=e.size();
int ans=;
used.clear();
for(int i=;i<m;i++){
int u=find(e[i].u),v=find(e[i].v);
int d=e[i].d;
if(u!=v){
p[u]=v;
ans+=d;
used.push_back(e[i]);
if(--cnt==) break;
}
}
return ans;
} int main(){
// freopen("in.txt","r",stdin);
// freopen("outttttttt.txt","w",stdout);
int T,q;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&q);
for(int i=;i<q;i++){
int cnt;
scanf("%d %d",&cnt,&cost[i]);
subn[i].clear();
while(cnt--){
int u;
scanf("%d",&u);
subn[i].push_back(u-);
}
} for(int i=;i<n;i++) scanf("%d %d",&x[i],&y[i]); vector<edge> e,need; for(int i=;i<n;i++)
for(int j=i+;j<n;j++){
int c=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
e.push_back(edge(i,j,c));
} for(int i=;i<n;i++) p[i]=i;
sort(e.begin(),e.end()); int ans=mst(n,e,need); for(int mask=;mask<(<<q);mask++){ for(int i=;i<n;i++) p[i]=i;
int cnt=n,c=; for(int i=;i<q;i++) if(mask & (<<i)){
c+=cost[i];
for(int j=;j<subn[i].size();j++){
int u=find(subn[i][j]),v=find(subn[i][]);
if(u!=v){p[u]=v;cnt--;}
}
}
vector<edge> dummy;
ans=min(ans,c+mst(cnt,need,dummy));
}
printf("%d\n",ans);
if(T) printf("\n");
}
return ;
}

UVa 1151 Buy or Build【最小生成树】的更多相关文章

  1. UVa 1151 - Buy or Build(最小生成树)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  3. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  4. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  5. uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)

    最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...

  6. UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)

    题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...

  7. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  8. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  9. UVA 1151二进制枚举子集 + 最小生成树

    题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...

随机推荐

  1. C#帮助控件HelpProvider的使用

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  2. 高级程序员与CTO技术总监首席架构师

    一.高级程序员 如果你是一个刚刚创业的公司,公司没有专职产品经理和项目经理,你就是公司的产品经理,你如果对你现在的开发员能力不满,那么你只需要的是一个高级程序员. 你定义功能.你做计划推进和管理,他可 ...

  3. 文档相关命令-cat命令查看一个文件

    用于查看一个文件的内容并将其显示在屏幕上 cat 后直接加上文件名 -n  表示显示行号 cat -n dirb/filee -A 显示所有内容包括特殊字符 cat -A dirb/filee

  4. 17.广度优先遍历bfs

    #include <iostream> #include <boost/config.hpp> //图(矩阵实现) #include <boost/graph/adjac ...

  5. Appserv 2.5.10 升级PHP from version 5.2 to 5.3

    解决方案查看 该文章:http://blog.csdn.net/dull_boy2/article/details/43927363

  6. c#.net 获取时间日期年月日时分秒生成自动文件名格式

    下面是日期和时间的各种方法,转换为字符串. 如果把输出的格式改下就可以做类似的文件名了,例如:2016010110101224356.doc  c#用DateTime.Now.ToString(&qu ...

  7. php时间差方法

    /** * 时间差计算 * * @param Timestamp $time * @return String Time Elapsed */ function time2Units ($time,$ ...

  8. 在yii2.0中封装一个生成验证码的控制器

    frontend目录下/封装的验证码类: <?php namespace frontend\controllers; use yii\base\Controller; class CapathC ...

  9. chrome 获取移动端页面元素信息

    一:背景在使用appium进行app端自动化测试的时候,一般使用的是uiautomatorviewer来给页面元素做定位.但如果遇到页面元素类型是webview的时候,则只能定位整个页面,而不能更进一 ...

  10. git 常用操作命令行

    mkdir files : 创建一个名字为files的文件夹 cd files : 切换目录到files pwd ; 显示当前所在目录 ls -ah : 查看本地隐藏不可见的文件夹 git init ...