Surfaces

Goals

Surfaces are a concept to allow graphical embedding of heterogeneous untrusting clients efficiently into one scene.

  • embedding - the core concept of a surface is that it may contain references to surfaces from the same client or different clients

  • heterogeneous - rendering to a surface does not require that a client use a specific library or toolkit, only that it be able to speak the surface protocol

  • untrusting - a client does not have to trust its embedding or embedded clients in order to render into a surface.  Having access to a surface from another client does not provide any access to that surface’s contents.

  • efficiently - rendering to a surface should have minimal overhead compared to rendering directly to the native screen and should be equally efficient regardless of the embedding depth.

Use cases

In Chromium, we can use surfaces for many of the embedding cases we have today:

  • embedding a blink-rendered tab in the browser’s UI

  • embedding a plugin or video within a page

  • embedding an iframe rendered from one process into an iframe rendered in a different process

Concepts

A Surface is a fixed size rectangle that can be rendered into by submitting frames.  A client can create a surface by asking the SurfaceManager to construct one for a client (possibly itself) to render into.  A Surface can be identified by two IDs generated by the SurfaceManager - one for identifying the surface when issuing frames to render to the surface, one to identify the surface when rendering from it to embed.

A Frame is a series of quads to draw, some of which may reference other surfaces.  A frame also contains a set of resources and associated synchronization points.  Here’s a (rough) outline of the structure of a frame:

  • List of prerequisite sequence numbers for the frame

  • List of resources with associated synchronization points

  • List of passes, each of which contains

    • Transform of the pass

    • Damage and output rects

    • List of quads within the pass, each of which has

      • Transform / rect / clip state / opacity / blend mode / etc (may be shared with other quads)

      • Material - maybe solid color, texture, surface, etc

      • Material-specific properties such as color, texture ID, surface ID

The act of submitting a frame generates an implicit sequence number that can be used to synchronize presentation with other frames, potentially submitted by other clients.  A surface identifier + sequence number tuple unique identifies a frame for all clients of an instance of the service (and there will typically only be one surface service in the system).

A Display is a physical display (when Chromium is the operating system) or a native OS window object (when Chromium is running inside another operating system).  The surface service provides a surface for each display for a designated client to issue frames to.  In the case of Chromium running on windows, for example, the surface service would generate a surface identifier for each top-level HWND and provide them to the browser UI code to render into.

Of particular note is that on Mac we can construct a display wrapping an IOSurface for each tab and let CoreAnimation composite the tabs with the browser UI.  This does not provide the bandwidth benefits of ÜberCompositor but it does allow everything outside of the browser process to use the same presentation path as platforms using Aura/ÜberCompositor and reduce a lot of platform-specific complexity in our code.

Processing model

For clients:

Whenever a client wants to update the rendering of a surface it owns, it generates a new frame and submits it to the SurfaceManager.  This frame may contain quads that references surfaces being embedded by this client.  A client does not have to issue a new frame whenever a surface it embeds updates its rendering.  Issuing a frame also transfers ownership of resources (GL textures, software shared memory buffers).

Whenever a client wants to start embedding another client, it first generates an appropriately sized surface through the SurfaceManager and then sends it to the client.  The embedding client can start immediately issuing frames referencing the new surface or it may wait to receive an acknowledgement from the embedded client that the surface is ready, depending on the desired application semantics.

Resizing is analogous to creating a new surface.

For the service:

Whenever the manager receives a new frame, it performs some sanity checks on the frame (i.e. making sure it only references frames that the client should be referencing) and then saves it in the surface’s potential frame list along.  Whenever this frame’s prerequisites are satisfied, it is moved into the eligible frame list for the surface.  Only one frame can be rendered for a given surface at a time, but a client is allowed to pipeline multiple frames.

Whenever a display is ready for a new frame and something has changed, the service aggregates frames from the surfaces that contribute to that display and then renders them.  The aggregation algorithm is simple:

  1. Start with the most recent eligible frame issued to the surface associated with the display

  2. Iterate through the quads in the frame in draw order, keeping track of the current clip and transform

    1. If the quad is not a reference to another surface, draw it

    2. If the quad is a reference to another surface, find the most recent eligible frame issued to the referenced surface

      1. If there is no such frame, or if this surface has already been visited in this aggregation (i.e. there’s a cycle) skip the surface quad

      2. Otherwise, recursively repeat this algorithm from step 2

When the service knows that it will never render from a given frame again - for instance if it has started rendering a newer frame for a given surface or if the embedding client has told the manager that it wants to destroy a surface - the service sends an acknowledgement to the client with a set of resources to return to the client along with associated synchronization points.

SurfaceService structure

The SurfaceManager keeps track of all surfaces created in the system.  For each surface, it keeps track of:

  • The client that created the surface and will be embedding (rendering from) the surface

  • The client that will be rendering into the surface (may be the same as the creator)

  • List of submitted frames for the given surface

The ResourceProvider keeps track of resources that the service has ownership of and how to return ownership to clients.  For GL textures, for instance, this means managing mailboxes.

The DisplayManager keeps track of all displays that the surface service is responsible for rendering into.  For each display, the DisplayManager owns a surface used to render into the display as well as some state for hit testing against surfaces and determining which surfaces contributed to the display’s last produced frame.

There is only one instance of each of the Manager types in an instance of the service.

A SurfaceAggregator implements the aggregation algorithm and knows how to submit an aggregated frame to a renderer.  Aggregators are (nearly) stateless and can be created whenever necessary.

A Renderer translates an aggregated frame into draw commands appropriate for a given display.  In GPU rendering mode, this means GL draw calls and a swap into the display.  In software rendering mode, this means skia calls into the appropriate SkCanvas.

Synchronization

Resource synchronization is the same as it is with ÜberCompositor, with the slight simplification that the pipeline depth is not influenced by the nesting level of the embedding.

Clients can optionally synchronize frames with each other using the prerequisite / postrequisite synchronization points.  This has to be done with care but can be useful to do things like prevent resize guttering.  99% of the use cases in Chromium will not require any explicit synchronization between different surfaces - in nearly all cases it’s perfectly fine (and desirable) to let clients render independently of each other.

Here’s an example of a possible gutter prevention algorithm.  Assume that client Alice is embedding client Bob and wants to resize its surface for Bob from 100x100 to 200x200.  If Bob responds fast enough to Alice’s resize message, Alice wants to make sure that Bob shows up at 200x200 in the same frame as Alice’s decorations.

Start conditions:

Alice is embedding Bob.  Alice owns a 100x100 surface that Bob is rendering into.  Alice and Bob both have pending frames referencing the 100x100 surface.

Sequence for Alice:

  • Alice decides to resize Bob to 200x200 and change decorations that Alice is rendering.

  • Alice requests a new 200x200 surface from the SurfaceManager

  • Alice sends Bob a resize request and a handle to the new 200x200 surface

  • Alice starts a timeout

    • If Bob responds to the resize message before the timeout:

      • Alice issues the first frame referencing the 200x200 surface with a prerequisite sequence number that it got from Bob

    • If Bob doesn’t respond before the timeout:

      • Alice issues a frame referencing the 100x100 surface and appropriate quads to stretch or gutter as appropriate

  • Regardless of when the resize response comes in, Alice issues a destroy call for the 100x100 surface to the SurfaceManager after starting to issues frames referencing the 200x200 surface.

Sequence for Bob:

  • Bob receives a resize message with the new surface identifier

  • Bob issues a new frame appropriate for a 200x200 surface which generates a sequence number for the frame

  • Bob sends a resize response to Alice with this sequence number

End conditions:

Alice and Bob are referencing a 200x200 surface

The SurfaceManager knows that the 100x100 surface can be destroyed as soon as the service no longer needs it.

If Bob is slow to respond, Alice may stall or submit one or more frames that gutter.  However if Bob responds fast enough the service can guarantee using the sequence numbers that the new frame from Bob and the new decorations from Alice show up on screen at the same time.

Surfaces的更多相关文章

  1. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  2. Parametric Curves and Surfaces

    Parametric Curves and Surfaces eryar@163.com Abstract. This paper is concerned with parametric curve ...

  3. Render OpenCascade Geometry Surfaces in OpenSceneGraph

    在OpenSceneGraph中绘制OpenCascade的曲面 Render OpenCascade Geometry Surfaces in OpenSceneGraph eryar@163.co ...

  4. Rendering Transparent 3D Surfaces in WPF with C#(转载)

    Rendering Transparent 3D Surfaces in WPF with C# The primary problems that arise when rendering semi ...

  5. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  6. 图书源代码下载: Modern Differential Geometry of CURVES and SURFACES with Mathematica

    http://alpha01.dm.unito.it/personalpages/abbena/gray/ Contents   1. Curves in the Plane |   2. Famou ...

  7. uva414 - Machined Surfaces

    uva414 - Machined Surfaces /* 水题,值得一提的是,getline使用时注意不能让它多吃回车键,处理方法可以用getchar. */ #include <iostre ...

  8. UVa 414 - Machined Surfaces

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=94&page=s ...

  9. 414 - Machined Surfaces

    Sample Input (character "B" for ease of reading. The actual input file will use the ASCII- ...

随机推荐

  1. node14---分层结构数据库操作

    /**回调函数(函数作为参数): 0. 外层函数调用的地方,一定是外层函数体先执行,回调函数和普通函数地址一样,然后看函数体规定回调函数怎么执行. 1. 异步时候使用回调函数, 无论是否异步,回调函数 ...

  2. hdoj--1010--Tempter of the Bone(搜索+奇偶剪枝)

    Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  3. BZOJ 3339 线段树

    思路: 考虑离线处理 显然 l固定时 r越大 ans越大 那我们不妨按照l从小到大排序 l->l+1的时候 l到next[l]这段区间都跟a[l]取min就好了 搞颗线段树维护一下 //By S ...

  4. (转载)Android学习之Intent使用

    ndroid学习之Intent使用   1.使用显示Intent Intent intent = new Intent(FirstActivity.this,SecondActivity.class) ...

  5. 【算法】Bellman-Ford算法(单源最短路径问题)(判断负圈)

    单源最短路问题是固定一个起点,求它到其他所有点的最短路的问题. 算法: 设 d[i]  表示 起点 s 离点 i 的最短距离. [1.初始化]  固定起点s,对所有的点 , 如果 i =  s ,  ...

  6. kindEditor编写插件遇到的问题

    kindEditor是一个功能强大的在线文本编辑器,而且提供了插件扩展功能,更好的满足用户各方面的需求.在项目中,我们就有如此的需求:在kindEditor编辑器中,添加一条下划线,并且在下划线的中间 ...

  7. 51nod 1110 距离之和最小V3

    X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].点P到点P[i]的带权距离 = 实际距离 * P[i]的权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带 ...

  8. PHP检验代码执行效率—时间统计方法

    <?php class runtime { ; ; function get_microtime() { list($usec,$sec) =explode('',microtime()); r ...

  9. Linux系统下安装配置 OpenLDAP + phpLDAPadmin

    实验环境: 操作系统:Centos 7.4 服务器ip:192.168.3.41 运行用户:root 网络环境:Internet LDAP(轻量级目录访问协议)是一个能实现提供被称为目录服务的信息服务 ...

  10. 你可能需要了解下Laravel集合

    前言 集合通过 Illuminate\Support\Collection 进行实例,Laravel的内核大部分的参数传递都用到了集合,但这并不代表集合就是好的.Laravel作为快捷并优雅的开发框架 ...