题意:

给出一个$R\times C$的棋盘,其中$1$到$N$之间的每个正整数都会在棋盘上出现两次,第$i$个数出现的位置是$(X_{i,1},Y_{i,1})$和$(X_{i,2},Y_{i,2})$,现在目的是把每一对相同的数用线(粗细忽略不计)连起来,且线不能相交也不能越过棋盘边界,求是否能完成。

$1\leq R,C\leq 10^8$

$1\leq N\leq 10^5$

题解:

看上去是神仙题,实际上很假。。。

大家有没有玩过麻将连连看那种小游戏?题意中的连线意义就差不多。首先如果把这个棋盘扩展到无限大,即没有棋盘边界的限制,显然一定能满足条件。因为棋盘边上的数字连的线肯定可以在向外连足够远之后连回来,而内部的线由于可以跨越每个格子的边界,必定可以满足条件。(正确性感性理解一下?)

那么有了边界限制之后,就只用考虑在两个位置都在边界上的那些数字,把这些数字看成一对括号,如果整个边界上按顺序(顺时针或逆时针)能构成一个合法括号序列,那么就能满足,否则就不行。画个图感受一下:

如图,左图是非法的而右图是合法的。那这个东西直接用栈判断一下就好了。。。先把所有位置排序,然后如果现在位置的数字和栈顶相等则弹出栈顶,否则把当前数字压入栈,最后判断栈是否为空即可。

ps:这题细节极其恶心!写挂了五六次才过样例。。。(可能是我写法比较挫)

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<stack>
#define inf 2147483647
#define eps 1e-9
using namespace std;
typedef long long ll;
struct node{
int x,id;
}li[][];
int r,c,n,x,y,xx,yy,nw,tot[];
stack<int>st;
bool cmp1(node a,node b){
return a.x<b.x;
}
bool cmp2(node a,node b){
return a.x>b.x;
}
int main(){
scanf("%d%d%d",&r,&c,&n);
for(int i=;i<=n;i++){
scanf("%d%d%d%d",&x,&y,&xx,&yy);
if((x&&y&&x!=r&&y!=c)||(xx&&yy&&xx!=r&&yy!=c))continue;
if(!x)nw=;
else if(x==r)nw=;
else if(!y)nw=;
else if(y==c)nw=;
if(nw==||nw==)li[nw][++tot[nw]]=(node){y,i};
else li[nw][++tot[nw]]=(node){x,i};
if(!xx)nw=;
else if(xx==r)nw=;
else if(!yy)nw=;
else if(yy==c)nw=;
if(nw==||nw==)li[nw][++tot[nw]]=(node){yy,i};
else li[nw][++tot[nw]]=(node){xx,i};
}
for(int i=;i<;i++){
if(i==||i==)sort(li[i]+,li[i]+tot[i]+,cmp1);
else sort(li[i]+,li[i]+tot[i]+,cmp2);
for(int j=;j<=tot[i];j++){
if(!st.empty()&&li[i][j].id==st.top())st.pop();
else st.push(li[i][j].id);
}
}
if(st.empty())puts("YES");
else puts("NO");
return ;
}

[arc076e]connected?的更多相关文章

  1. NOIp2018模拟赛四十四

    加量不加价?! 昨晚看时间变成了3.5h以为终于变成了正常难度,结果还是国家集训队作业... A题看起来很神仙,B题看上去很神仙,C题一看就知道很神仙: 结果发现B是假题,放榜后发现A也是假题,C是Y ...

  2. 【arc076E】Connected?

    Portal -->arc076E Description 给你一个\(R*C\)的矩形,矩形中某些格子的端点上填了\(1\sim n\)这\(n\)个数字,每个数字出现了恰好两遍,现在要将每一 ...

  3. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. PTA Strongly Connected Components

    Write a program to find the strongly connected components in a digraph. Format of functions: void St ...

  5. poj 1737 Connected Graph

    // poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...

  6. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  7. Windows Phone 8 解锁提示IpOverUsbSvc问题——IpOverUsbEnum返回No connected partners found解决方案

    我的1520之前总是无法解锁,提示:IpOverUsbSvc服务没有开启什么的. 根据网上网友的各种解决方案: 1. 把手机时间设置为当前时间,并且关闭“自动设置” 2. 确保手机接入了互联网 3.确 ...

  8. POJ1737 Connected Graph

    Connected Graph Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3156   Accepted: 1533 D ...

  9. [LintCode] Find the Weak Connected Component in the Directed Graph

      Find the number Weak Connected Component in the directed graph. Each node in the graph contains a ...

随机推荐

  1. stm8s103调试注意点

    外设时钟的配置,有次ADC就是不工作,查问题查了很久,总是怀疑ADC配置问题,然后利用库函数的例程,发现就可以,最后发现,外设时钟没开启,外设时钟如下配置 CLK->PCKENR1 = 0x00 ...

  2. 操作mysql操作数据库

    操作数据库 查询数据库:show databases: 增加数据库:create database student default character set uft-8:(设置默认字符集) 删除数据 ...

  3. leetcode525. 连续数组 python

    给定一个二进制数组, 找到含有相同数量的 0 和 1 的最长连续子数组. 示例 1: 输入: [0,1] 输出: 2 说明: [0, 1] 是具有相同数量0和1的最长连续子数组. 示例 2: 输入: ...

  4. 【HiJ1m】在NOIP2017前写过的有用的东西汇总

    http://www.cnblogs.com/Elfish/p/7544623.html 高级树状数组 http://www.cnblogs.com/Elfish/p/7554420.html BST ...

  5. UVALive-8077 Brick Walls 找规律

    题目链接:https://cn.vjudge.net/problem/UVALive-8077 题意 有一个用砖头磊起来的墙,现在又有一只蚂蚁,想沿着砖缝从起点跑到终点. 问最短路长度. 思路 找规律 ...

  6. myeclipse 字体设置为UTF-8

    将myeclipse设置成utf-8格式的方式如下: 1.windows->Preferences打开"首选项"对话框,如图: 2.点击左侧导航树,导航到general-&g ...

  7. 通过rpm安装jdk

    通过rpm安装,安装在/usr/local 1 .编辑系统环境变量 vi /etc/profile 输入i 加入内容如下: export JAVA_HOME=/usr/local/jdk1.7.0_7 ...

  8. poj2411 Mondriaan's Dream (状压dp+多米诺骨牌问题)

    这道题的解析这个博客写得很好 https://blog.csdn.net/shiwei408/article/details/8821853 大致意思就是我们可以只处理两行之间的关系,然后通过这两个关 ...

  9. Maven学习总结(25)——Eclipse Maven Update 时JDK版本变更问题

    1.新建一个Maven项目JDK版本和系统版本不对应, 2.右键Maven项目->Maven->Update ProjectJDK版本改变了, 3.操作系统的JDK重装了新的版本,这是引起 ...

  10. COGS——T 1175. [顾研NOIP] 旅游电车

    http://www.cogs.pro/cogs/problem/problem.php?pid=1175 ★★☆   输入文件:buss.in   输出文件:buss.out   简单对比时间限制: ...